EE300Ex Series

HUMIDITY / TEMPERATURE TRANSMITTER

For Intrinsically Safe Applications

Operating instructions
The operating instructions form part of the equipment supplied and are used to ensure optimal operation and functioning of the device. E+E Elektronik® Ges.m.b.H. provides no warranty of any kind on this publication and no liability for improper use of the products described.

To ensure perfect functioning, these operating instructions must be read carefully and observed before the transmitter is commissioned. These instructions must be provided to all persons responsible for mounting, commissioning, operation, inspection, maintenance and repair.

These operating instructions must not be used for the purposes of competition without our written permission and must not be forwarded to third parties. Copies may be made for internal purposes. All information, technical data and technical diagrams included in these instructions were correct in accordance with the data available at the time of writing.

The company E+E Elektronik GmbH reserves the right to make modifications at any time and without prior notification, with no update requirement on models produced before the modification date. For this reason, we request that you contact our customer service department, quoting the device number, designation and type given on the nameplate.

© Copyright E+E Elektronik Ges.m.b.H.
All rights reserved.

EMC note USA (FCC):
This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

EMC note Canada (ICES-003):
CAN ICES-3 (A) / NMB-3 (A)
Contents

1. **GENERAL NOTES** 4
 1.1 Explanation of symbols 4
 1.2 Safety instructions 4
 1.2.1 General safety instructions 4
 1.3 Environmental aspects 4
2. **TECHNICAL DESCRIPTION** 5
 2.1 General 5
 2.2 EE300Ex labeling 6
 2.3 Certification 7
 2.4 Housing and probe dimensions 12
 2.5 Humidity probe working range 13
 2.6 Dewpoint measurement in natural gas 13
 2.7 Measurement of moisture in oil 13
3. **INSTALLATION IN AN EXPLOSION HAZARD AREA** 14
 3.1 General 14
 3.2 Housing assembly 15
 3.2.1 Drilling plan for the housing 15
 3.3 Assembly in category 1 (zone 0 / 20), Division 1 16
 3.4 Assembly in categories 2 and 3 (Zone 1 2 / 21 22), Division 2 17
 3.5 Mounting the measurement sensor 18
 3.5.1 Mounting the clamping ring screw connection 18
 3.5.2 Mounting with mounting flange (optional) 19
 3.5.3 Mounting the probe using ball valve (optional) 20
 3.5.4 Mounting the probe using sensor retraction tool (optional) 21
 3.6 Calculation of the maximum cable length 22
 3.7 Selecting a suitable power supply device for ATEX Zone concept: 22
4. **ELECTRICAL CONNECTIONS** 24
 4.1 Connecting cable 24
 4.2 Terminal assignment EE300Ex 25
 4.3 Configuration adapter 25
 4.4 Calibration of the current loop 25
 4.5 Grounding and potential equalization 26
5. **DISPLAY (OPTIONAL)** 27
6. **MAINTENANCE** 28
 6.1 Filter replacement 28
 6.2 Cleaning 28
 6.2.1 Cleaning the display 28
 6.2.2 Cleaning the sensor 28
 6.3 Customer adjustment of humidity and temperature 28
 6.4 Display error messages 28
 6.5 Ordering information for accessories 28
7. **TECHNICAL DATA - EE300EX-HT** 29
8. **TECHNICAL DATA - EE300EX-xT** 30
9. **ATEX CERTIFICATE** 31
10. **EC DECLARATION OF CONFORMITY** 36
11. **IECEX CERTIFICATE OF CONFORMITY - COC** 37
12. **FM CERTIFICATE USA** 38
13. **FM CERTIFICATE CANADA** 45
14. **CONTROL DRAWING M1_1309080** 52
15. **CERTIFICATES CHINA, KOREA AND JAPAN** 55
1. **GENERAL NOTES**

1.1 **Explanation of symbols**

This symbol indicates safety information.

It is essential that this safety information is followed. The manufacturer accepts no liability in the case of contravention. The risk is borne solely by the user.

This symbol indicates an instruction.

These instructions should be observed to achieve optimum functioning of the device.

This symbol indicates regulations that must be observed in hazardous areas at risk of explosion.

1.2 **Safety instructions**

1.2.1 **General safety instructions**

In the event of improper or incorrect use of the device, the following risks occur:

- Hazards for the device and other assets of the user as well as
- Hazards that impair the efficient working of the device.

The following instructions should be observed to ensure personal safety:

- Only qualified or specially trained personnel should be permitted to work on or operate the device.
- These operating instructions must always be available to all persons carrying out mounting, commissioning, operation and servicing.
- It is essential that the device is only operated when in perfect operating condition.
- Any faults determined must be rectified immediately by specialist personnel or by E+E Elektronik customer services.
- No technical modifications to the device are permitted.
- Take care when unscrewing the filter cap as the sensor element may be damaged in the process.
- The sensor element is an ESD-sensitive component, i.e. ESD safety measures must be observed when touching the sensor element.
- Only touch sensors on the connecting wires.
- The devices are designed for operation on safety extra-low voltage (safety class III).

1.3 **Environmental aspects**

Products from E+E Elektronik® are developed incorporating all important environmental aspects. For this reason, avoiding environmental contamination should also be observed during disposal as well.

On disposal of the transmitter, the individual components must be separated by type. The electronics must be collected in electronics waste and disposed of correctly.
2. TECHNICAL DESCRIPTION

2.1 General

The entire EE300Ex transmitter can be installed directly in the explosion hazard area. The EE300Ex is the ideal transmitter in challenging industrial applications. The housing and measurement sensor made from stainless steel, as well as the proven E+E humidity sensors, ensure reliable and stable measurement results over long periods. The EE300Ex has a 2-wire design and has two individually scalable analogue outputs with 4…20mA. In addition to the measured values for relative humidity and temperature, the transmitter also delivers the following calculated values:

- Absolute humidity \(d_v \)
- Wet-bulb temperature \(T_w \)
- Specific enthalpy \(h \)
- Dew-point temperature \(T_d \)
- Frost point temperature \(T_f \)
- Mixing ratio \(r \)
- Water vapour partial pressure \(e \)
- Water activity \(a_w \)
- Water content in mineral transformer oil \(x \) [ppm]
- Water content in customer-specific oil \(x \) [ppm]

The EE300Ex-HT humidity / temperature transmitter is available in the following designs:

<table>
<thead>
<tr>
<th>Model</th>
<th>Pressure range</th>
<th>Working range</th>
<th>Ø-probe</th>
</tr>
</thead>
<tbody>
<tr>
<td>A - wall mounting</td>
<td>-40...60°C (-40...140°F)</td>
<td>12mm (0.47")</td>
<td></td>
</tr>
<tr>
<td>E - remote sensing probe up to 20bar (300psi)</td>
<td>0.1...20 bar (1.5...300 psi)</td>
<td>-40...180°C (-40...356°F)</td>
<td>12mm (0.47")</td>
</tr>
<tr>
<td>E - remote sensing probe up to 20bar (300psi) with movable fitting for assembly / disassembly under pressure</td>
<td>0.1...20 bar (1.5...300 psi)</td>
<td>-40...180°C (-40...356°F)</td>
<td>13mm (0.5")</td>
</tr>
<tr>
<td>M - remote sensing probe up to 300bar (4351psi)</td>
<td>0.01...300 bar (0.15...4351 psi)</td>
<td>-40...180°C (-40...356°F)</td>
<td>12mm (0.47")</td>
</tr>
<tr>
<td>U - remote sensing probe for sensor retraction tool PN250</td>
<td>0.01...300 bar (0.15...4351 psi)</td>
<td>-40...180°C (-40...356°F)</td>
<td>12/15 (0.47/0.59")</td>
</tr>
</tbody>
</table>

The EE300Ex-xT temperature transmitter is available in the following designs:

<table>
<thead>
<tr>
<th>Model</th>
<th>Pressure range</th>
<th>Working range</th>
<th>Ø-probe</th>
</tr>
</thead>
<tbody>
<tr>
<td>A - wall mounting</td>
<td>-40...60°C (-40...140°F)</td>
<td>6mm (0.24")</td>
<td></td>
</tr>
<tr>
<td>M - remote sensing probe</td>
<td>0.1...20bar (1.5...300psi)</td>
<td>-70...200°C (-94...392°F)</td>
<td>6mm (0.24")</td>
</tr>
</tbody>
</table>
2.2 EE300Ex labeling

Each EE300Ex is only characterized for one certificate. The Ordering Code on the Product label shows the type of the Ex Certificate on position “Ex-certificate”. The exact Ex marking with the certificate number is printed on the Hazardous label (Ex marking). EE300Ex with IECEx, USA or Canada labeling must not be installed in the European Union.
2.3 Certification

EUROPE:
The EE300Ex transmitter fulfills the ATEX Directives on intrinsically safe operating equipment.

Applied standards for ATEX:

- EN 1127-1:2011
- EN 60079-0:2012
- EN 60079-11:2012

The EC type approval test has been carried out by TÜV SÜD Product Service GmbH.

Certified to EC type approval test TPS 13 ATEX 38892 003 X.

Entity parameters

<table>
<thead>
<tr>
<th>Ex-Designation</th>
<th>(U_i = 28, \text{V}; I_i = 100, \text{mA}; P_i = 700, \text{mW}; C_i = 2.2, \text{nF}; L_i \approx 0, \text{mH})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmitter without display</td>
<td>Ex ia IIC T4 Ga / Ex ia IIC T80°C Da</td>
</tr>
<tr>
<td>Transmitter with display</td>
<td>Ex ia IIC T4 Gb / Ex ia IIC T80°C Da</td>
</tr>
<tr>
<td>Remote sensing probe</td>
<td>Ex ia IIC T6-T1 Ga / Ex ia IIC T80°C...200°C Da</td>
</tr>
</tbody>
</table>

Working temperature range for the probes:

Specification of the temperature class "TKG" for use in gas area exposed to explosion hazards and "TKD" for use in dust area exposed to explosion hazards as a function of the ambient temperature "Tamb" for the humidity and temperature probe and the temperature probe:

<table>
<thead>
<tr>
<th>TKG</th>
<th>TKD</th>
<th>Humidity and Temperature Probe</th>
</tr>
</thead>
<tbody>
<tr>
<td>T6</td>
<td>80°C</td>
<td>-40°C ≤ Tamb ≤ +60°C</td>
</tr>
<tr>
<td>T5</td>
<td>95°C</td>
<td>-40°C ≤ Tamb ≤ +75°C</td>
</tr>
<tr>
<td>T4</td>
<td>130°C</td>
<td>-40°C ≤ Tamb ≤ +110°C</td>
</tr>
<tr>
<td>T3</td>
<td>195°C</td>
<td>-40°C ≤ Tamb ≤ +175°C</td>
</tr>
<tr>
<td>T2</td>
<td>200°C</td>
<td>-40°C ≤ Tamb ≤ +180°C</td>
</tr>
<tr>
<td>T1</td>
<td>200°C</td>
<td>-40°C ≤ Tamb ≤ +180°C</td>
</tr>
</tbody>
</table>

INTERNATIONAL:

Applied Standard for IECEx:

- IEC 60079-0:2011
- IEC 60079-11:2011

The Certificate of Conformity has been carried out by FM Approvals.

Certificate No.: IECEx FMG 14.0017 X

Entity parameters

<table>
<thead>
<tr>
<th>Vdc ≤ U_i = 28, \text{Vdc}; I_i = 100, \text{mA}; P_i = 700, \text{mW}; C_i = 2.2, \text{nF}; L_i = 0, \text{mH}</th>
</tr>
</thead>
</table>

Ex-Designation

<table>
<thead>
<tr>
<th>Ex-Designation</th>
<th>Ex ia IIC T4 Ga / Ex ia IIC T80°C Da</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmitter without display</td>
<td>Ex ia IIC T4 Gb / Ex ia IIB T4 Ga</td>
</tr>
<tr>
<td>Remote sensing probe</td>
<td>Ex ia IIC T6-T1 Ga / Ex ia IIC T80°C Da</td>
</tr>
</tbody>
</table>

Humidity and temperature probe:

- T6 temperature class based on -40°C (-40°F) ≤ Ta ≤ 60°C (140°F)
- T5 temperature class based on -40°C (-40°F) ≤ Ta ≤ 75°C (167°F)
- T4 temperature class based on -40°C (-40°F) ≤ Ta ≤ 110°C (230°F)
- T3 temperature class based on -40°C (-40°F) ≤ Ta ≤ 175°C (347°F)
- T2 temperature class based on -40°C (-40°F) ≤ Ta ≤ 180°C (356°F)
- T1 temperature class based on -40°C (-40°F) ≤ Ta ≤ 180°C (356°F)

Temperature probe:

- T6 temperature class based on -70°C (-94°F) ≤ Ta ≤ 60°C (140°F)
- T5 temperature class based on -70°C (-94°F) ≤ Ta ≤ 75°C (167°F)
- T4 temperature class based on -70°C (-94°F) ≤ Ta ≤ 110°C (230°F)
- T3 temperature class based on -70°C (-94°F) ≤ Ta ≤ 175°C (347°F)
- T2 temperature class based on -70°C (-94°F) ≤ Ta ≤ 200°C (392°F)
- T1 temperature class based on -70°C (-94°F) ≤ Ta ≤ 200°C (392°F)
KOREAN (IECEx based):

Applied law for Korea:
Article 34 of the Occupational Safety & Health Act

The Certificate of Conformity has been carried out by KC.

Certificate No. REMOTE: 17-AV4BO-0107X
Certificate No. WALL: 16-AV4BO-0364X

Entity parameters: 6.4 Vdc ≤ Ui ≤ 28Vdc; Ii = 100mA; Pi = 700mW; Ci = 2.2nF; Li = 0mH

Ex-Designation

Transmitter
Ex ia IIC T4 (Ta = -40°C to 60°C)

Remote sensing probe
Ex ia IIC T6-T1 (Ta = -40°C to 180°C)

Humidity and temperature probe:
- T6 temperature class based on -40°C (-40°F) ≤ Ta ≤ 60°C (140°F)
- T5 temperature class based on -40°C (-40°F) ≤ Ta ≤ 75°C (167°F)
- T4 temperature class based on -40°C (-40°F) ≤ Ta ≤ 110°C (230°F)
- T3 temperature class based on -40°C (-40°F) ≤ Ta ≤ 175°C (347°F)
- T2 temperature class based on -40°C (-40°F) ≤ Ta ≤ 180°C (356°F)
- T1 temperature class based on -40°C (-40°F) ≤ Ta ≤ 180°C (356°F)

In area with explosive gas group IIC, the EE300Ex must be mounted in zone 1.
In gas Ex area of group IIB the installation in zone 0 is permitted.

No dust certification or temperature probe without humidity.

SPECIFIC CONDITIONS OF USE:

1. There is no display permitted in gas hazard area Zone 0 for group IIC.
2. There is no filter cap made of plastic or with plastic parts permitted in the gas hazard area Zone 0 for group IIC.
3. EE300Ex remote probe (temperature - humidity 12 mm and temperature 6 mm) must be earthed.
4. In case of using both measuring channels, each channel must be driven separately with their own galvanic safety barrier.

JAPAN (IECEx based):

Type Approval Certificate has been carried out by TIIS.

Certificate No.: TC22061

Entity parameters: Ui = 28Vdc; Ii = 100mA; Pi = 700mW; Ci = 2.2nF; Li = 0mH

Ex-Designation

Ex ia IIC T4 Gb (Ta = -40°C to 60°C)

No installation in Ga permitted. EE300Ex must be mounted in zone 1.
No dust certification or temperature probe without humidity.
Certificate of Conformity has been carried out by NEPSI.

Cert NO. GYJ16.1417X

Entity parameters: $U_i = 28\text{Vdc}; I_i = 100\text{mA}; P_i = 700\text{mW}; C_i = 2.2\text{nF}; L_i = 0\text{mH}$

Ex-Designation

Without display:
Ex ia IIC T4 Ga
Ex iaD 20 T131

With display:
Ex ia IIC T4 Gb
Ex ia IIB T4 Ga

Remote sensing probe
Ex ia IIC T1-T6
Ex iaD 20 T80

<table>
<thead>
<tr>
<th>Temperature operating range</th>
<th>Equipment</th>
<th>Temperature Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>-40°C ~ +60°C</td>
<td>Integrated transmitter</td>
<td>T4/T131</td>
</tr>
<tr>
<td>-40°C ~ +60°C / -70°C ~ +60°C</td>
<td>Remote temperature-humidity-probe/Remote temperature probe</td>
<td>T6/T80</td>
</tr>
<tr>
<td>-40°C ~ +75°C / -70°C ~ +75°C</td>
<td></td>
<td>T5</td>
</tr>
<tr>
<td>-40°C ~ +110°C / -70°C ~ +110°C</td>
<td></td>
<td>T4</td>
</tr>
<tr>
<td>-40°C ~ +175°C / -70°C ~ +175°C</td>
<td></td>
<td>T3</td>
</tr>
<tr>
<td>-40°C ~ +180°C / -70°C ~ +200°C</td>
<td></td>
<td>T2</td>
</tr>
<tr>
<td>-40°C ~ +180°C / -70°C ~ +200°C</td>
<td></td>
<td>T1</td>
</tr>
</tbody>
</table>

SPECIFIC CONDITIONS OF USE:

1. There is no display permitted in the dust hazardous area and the gas hazard area EPL Ga for group IIC.
2. There is no filter cap made of plastic or with plastic parts permitted in the gas hazard area EPL Ga for group IIC.
3. EE300Ex remote probe (temperature - humidity 12 mm and temperature 6 mm) must be earthed.
4. The serial software configuration port of the EE300Ex may only be used with the EE-PCA configuration adapter and the HA011061 connection cable.
5. For use EE300Ex with remote probe in EPL Ga the remote probe must be installed in a metallic grounded protective tube.
6. In case of using both measuring channels, each channel must be driven separately with their own galvanic safety barrier.
USA:

Applied Standard for the U.S. NEC 500, NEC505 and 506:
- FM Class 3600 2011
- FM Class 3610 2015
- FM Class 3611 2016
- FM Class 3810 2005
- ANSI/ISA 61010-1 2012
- ANSI/ISA 60079-0 2013
- ANSI/ISA 60079-11 2014
- ANSI/IEC 60529 2004

The Certificate of Conformity has been carried out by FM Approvals.

Certificate No.: FM17US0302X

Entity parameters:
- $6.4 \, \text{Vdc} \leq V_{\text{max}} \text{ (or } U_i) \leq 28 \, \text{Vdc}; \, I_{\text{max}} \text{ (or } I_i) = 100\, \text{mA}; \, P_i = 700\, \text{mW}; \, C_i = 2.2\, \text{nF}; \, L_i = 0\, \text{mH}$

Ex-Designation NEC 500 (Division)

Transmitter without display
Class I, II, III, Division 1, Groups ABCDEFG; $T_4 \, \text{Ta} = -40^\circ \text{C} \text{ to } +60^\circ \text{C}; \, \text{Entity – M1}_139080; \, \text{IP65}$
Class I, II, III, Division 2, Groups ABCDEFG; $T_4 \, \text{Ta} = -40^\circ \text{C} \text{ to } +60^\circ \text{C}$

Transmitter with display
Class I, Division 1, Groups CD; $T_4 \, \text{Ta} = -40^\circ \text{C} \text{ to } +60^\circ \text{C}; \, \text{Entity – M1}_139080$
Class I, Division 2, Groups ABCD; $T_4 \, \text{Ta} = -40^\circ \text{C} \text{ to } +60^\circ \text{C}; \, \text{Entity – M1}_139080$

Remote sensing probe
Class I, II, III, Division 1, Groups ABCDEFG; $T_6…T_1; \, \text{Entity – M1}_139080; \, \text{IP65}$
Class I, II, III, Division 2, Groups ABCDEFG; $T_6…T_1$

Humidity and temperature probe:
- T_6 temperature class based on $-40^\circ \text{C} \text{ (-40°F)} \leq \text{Ta} \leq 60^\circ \text{C} \text{ (140°F)}$
- T_5 temperature class based on $-40^\circ \text{C} \text{ (-40°F)} \leq \text{Ta} \leq 75^\circ \text{C} \text{ (167°F)}$
- T_4 temperature class based on $-40^\circ \text{C} \text{ (-40°F)} \leq \text{Ta} \leq 110^\circ \text{C} \text{ (230°F)}$
- T_3 temperature class based on $-40^\circ \text{C} \text{ (-40°F)} \leq \text{Ta} \leq 175^\circ \text{C} \text{ (347°F)}$
- T_2 temperature class based on $-40^\circ \text{C} \text{ (-40°F)} \leq \text{Ta} \leq 180^\circ \text{C} \text{ (356°F)}$
- T_1 temperature class based on $-40^\circ \text{C} \text{ (-40°F)} \leq \text{Ta} \leq 180^\circ \text{C} \text{ (356°F)}$

Temperature probe:
- T_6 temperature class based on $-70^\circ \text{C} \text{ (-94°F)} \leq \text{Ta} \leq 60^\circ \text{C} \text{ (140°F)}$
- T_5 temperature class based on $-70^\circ \text{C} \text{ (-94°F)} \leq \text{Ta} \leq 75^\circ \text{C} \text{ (167°F)}$
- T_4 temperature class based on $-70^\circ \text{C} \text{ (-94°F)} \leq \text{Ta} \leq 110^\circ \text{C} \text{ (230°F)}$
- T_3 temperature class based on $-70^\circ \text{C} \text{ (-94°F)} \leq \text{Ta} \leq 175^\circ \text{C} \text{ (347°F)}$
- T_2 temperature class based on $-70^\circ \text{C} \text{ (-94°F)} \leq \text{Ta} \leq 200^\circ \text{C} \text{ (392°F)}$
- T_1 temperature class based on $-70^\circ \text{C} \text{ (-94°F)} \leq \text{Ta} \leq 200^\circ \text{C} \text{ (392°F)}$

Ex-Designation NEC 505/506 (Zone)

Transmitter without display
Class I, Zone 0, AEx ia IIC $T_4 \, \text{Ta} = -40^\circ \text{C} \text{ to } +60^\circ \text{C} \text{ Ga}; \, \text{Entity – M1}_139080; \, \text{IP65}$
Zone 20, AEx ia IIIC $T_{131^\circ \text{C}} \, \text{Ta} = -40^\circ \text{C} \text{ to } +60^\circ \text{C} \text{ Da}; \, \text{Entity – M1}_139080; \, \text{IP65}$

Transmitter with display
Class I, Zone 0, AEx ia IIB $T_4 \, \text{Ta} = -40^\circ \text{C} \text{ to } +60^\circ \text{C} \text{ Ga}; \, \text{Entity – M1}_139080$
Class I, Zone 1, AEx ia IIC $T_4 \, \text{Ta} = -40^\circ \text{C} \text{ to } +60^\circ \text{C} \text{ Gb}; \, \text{Entity – M1}_139080$

Remote sensing probe
Class I, Zone 0, AEx ia IIIC $T_6…T_1 \, \text{Ga}; \, \text{Entity – M1}_139080; \, \text{IP65}$
Zone 20, AEx ia IIIC $T_{80^\circ \text{C}} \, \text{Ta} = -40^\circ \text{C} \text{ to } +60^\circ \text{C} \text{ Da}; \, \text{Entity – M1}_139080; \, \text{IP65}$

Humidity and temperature probe:
- T_6 temperature class based on $-40^\circ \text{C} \text{ (-40°F)} \leq \text{Ta} \leq 60^\circ \text{C} \text{ (140°F)}$
- T_5 temperature class based on $-40^\circ \text{C} \text{ (-40°F)} \leq \text{Ta} \leq 75^\circ \text{C} \text{ (167°F)}$
- T_4 temperature class based on $-40^\circ \text{C} \text{ (-40°F)} \leq \text{Ta} \leq 110^\circ \text{C} \text{ (230°F)}$
- T_3 temperature class based on $-40^\circ \text{C} \text{ (-40°F)} \leq \text{Ta} \leq 175^\circ \text{C} \text{ (347°F)}$
- T_2 temperature class based on $-40^\circ \text{C} \text{ (-40°F)} \leq \text{Ta} \leq 180^\circ \text{C} \text{ (356°F)}$
- T_1 temperature class based on $-40^\circ \text{C} \text{ (-40°F)} \leq \text{Ta} \leq 180^\circ \text{C} \text{ (356°F)}$

Temperature probe:
- T_6 temperature class based on $-70^\circ \text{C} \text{ (-94°F)} \leq \text{Ta} \leq 60^\circ \text{C} \text{ (140°F)}$
- T_5 temperature class based on $-70^\circ \text{C} \text{ (-94°F)} \leq \text{Ta} \leq 75^\circ \text{C} \text{ (167°F)}$
- T_4 temperature class based on $-70^\circ \text{C} \text{ (-94°F)} \leq \text{Ta} \leq 110^\circ \text{C} \text{ (230°F)}$
- T_3 temperature class based on $-70^\circ \text{C} \text{ (-94°F)} \leq \text{Ta} \leq 175^\circ \text{C} \text{ (347°F)}$
- T_2 temperature class based on $-70^\circ \text{C} \text{ (-94°F)} \leq \text{Ta} \leq 200^\circ \text{C} \text{ (392°F)}$
- T_1 temperature class based on $-70^\circ \text{C} \text{ (-94°F)} \leq \text{Ta} \leq 200^\circ \text{C} \text{ (392°F)}$
Canada:

Applied Standard for Canada CEC Section 18 and Annex J:

- CSA-22.2 No. 0-M91 R2006
- CAN/CSA-22.2 No. 61010-1 2012
- CAN/CSA-22.2 No. 60079-0 2015
- CAN/CSA-22.2 No. 60079-11 2014
- CSA-C 22.2 No. 142-M1987 R2004
- CSA-C 22.2 No. 213 2015
- CSA-C 22.2 No. 60529 R2010

The Certificate of Conformity has been carried out by FM Approvals.

Certificate No.: FM17CA0154X

Entity parameters:

\[6.4 \text{Vdc} \leq V_{\text{max}} \text{ (or } U_{i} \text{)} \leq 28 \text{ Vdc}; \quad I_{\text{max}} \text{ (or } I_{i} \text{)} = 100 \text{mA}; \quad P_{i} = 700 \text{mW}; \quad C_{i} = 2.2 \text{nF}; \quad L_{i} = 0 \text{mH} \]

Ex-Designation CEC Annex J (Division)

Transmitter without display

- Class I, II, III, Division 1, Groups ABCDEFG; T4 Ta = -40°C to +60°C; Entity – M1_139080; IP65
- Class I, II, III, Division 2, Groups ABCDEFG; T4 Ta = -40°C to +60°C

Transmitter with display

- Class I, Division 1, Groups CD; T4 Ta = -40°C to +60°C; Entity – M1_139080
- Class I, Division 2, Groups ABCD; T4 Ta = -40°C to +60°C; Entity – M1_139080

Remote sensing probe

- Class I, II, III, Division 1, Groups ABCDEFG; T6...T1; Entity – M1_139080; IP65
- Class I, II, III, Division 2, Groups ABCDEFG; T6...T1

Humidity and temperature probe:

- T6 temperature class based on \(-40°C (-40°F) \leq T_a \leq 60°C (140°F)\)
- T5 temperature class based on \(-40°C (-40°F) \leq T_a \leq 75°C (167°F)\)
- T4 temperature class based on \(-40°C (-40°F) \leq T_a \leq 110°C (230°F)\)
- T3 temperature class based on \(-40°C (-40°F) \leq T_a \leq 175°C (347°F)\)
- T2 temperature class based on \(-40°C (-40°F) \leq T_a \leq 180°C (356°F)\)
- T1 temperature class based on \(-40°C (-40°F) \leq T_a \leq 180°C (356°F)\)

Temperature probe:

- T6 temperature class based on \(-70°C (-94°F) \leq T_a \leq 60°C (140°F)\)
- T5 temperature class based on \(-70°C (-94°F) \leq T_a \leq 75°C (167°F)\)
- T4 temperature class based on \(-70°C (-94°F) \leq T_a \leq 110°C (230°F)\)
- T3 temperature class based on \(-70°C (-94°F) \leq T_a \leq 175°C (347°F)\)
- T2 temperature class based on \(-70°C (-94°F) \leq T_a \leq 200°C (392°F)\)
- T1 temperature class based on \(-70°C (-94°F) \leq T_a \leq 200°C (392°F)\)

Ex-Designation CEC Section 18 (Zone)

Transmitter without display

- Zone 0, Ex ia IIC T4 Ta = -40°C to +60°C Ga; Entity – M1_139080; IP65
- Zone 20, Ex ia IIIC T131°C Ta = -40°C to +60°C Da; Entity – M1_139080; IP65

Transmitter with display

- Zone 0, Ex ia IIB T4 Ta = -40°C to +60°C Ga; Entity – M1_139080
- Zone 1, Ex ia IIC T4 Ta = -40°C to +60°C Gb; Entity – M1_139080

Remote sensing probe

- Zone 0, Ex ia IIB T6...T1 Ga; Entity – M1_139080; IP65
- Zone 20, Ex ia IIIC T80°C Da; Entity – M1_139080; IP65

Humidity and temperature probe:

- T6 temperature class based on \(-40°C (-40°F) \leq T_a \leq 60°C (140°F)\)
- T5 temperature class based on \(-40°C (-40°F) \leq T_a \leq 75°C (167°F)\)
- T4 temperature class based on \(-40°C (-40°F) \leq T_a \leq 110°C (230°F)\)
- T3 temperature class based on \(-40°C (-40°F) \leq T_a \leq 175°C (347°F)\)
- T2 temperature class based on \(-40°C (-40°F) \leq T_a \leq 180°C (356°F)\)
- T1 temperature class based on \(-40°C (-40°F) \leq T_a \leq 180°C (356°F)\)

Temperature probe:

- T6 temperature class based on \(-70°C (-94°F) \leq T_a \leq 60°C (140°F)\)
- T5 temperature class based on \(-70°C (-94°F) \leq T_a \leq 75°C (167°F)\)
- T4 temperature class based on \(-70°C (-94°F) \leq T_a \leq 110°C (230°F)\)
- T3 temperature class based on \(-70°C (-94°F) \leq T_a \leq 175°C (347°F)\)
- T2 temperature class based on \(-70°C (-94°F) \leq T_a \leq 200°C (392°F)\)
- T1 temperature class based on \(-70°C (-94°F) \leq T_a \leq 200°C (392°F)\)
2.4 Housing and probe dimensions

Wall mounting humidity and temperature - Model A

Remote sensing probe humidity/temperature up to 300 bar (4351 psi) - Model U

Remote sensing probe humidity/temperature up to 20bar (300psi) or 300 bar (4351 psi) - Model E and M

Pressure-tight probe up to 300 bar (4351 psi) have a leak rate A according to EN12266-1

Remote sensing probe humidity/temperature up to 20bar (300psi) - Model E with sliding fitting

Pressure-tight probe up to 20bar (300psi) have a leak rate B according to EN12266-1
2.5 Humidity probe working range

The grey area shows the allowed measurement range for the humidity sensor. Although working points that lie outside of this range do not lead to the destruction of the element, the specified measurement accuracy cannot be guaranteed, however.

<table>
<thead>
<tr>
<th>Relative humidity [% rel. hum.]</th>
<th>Temperature [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>180</td>
</tr>
<tr>
<td>90</td>
<td>160</td>
</tr>
<tr>
<td>80</td>
<td>140</td>
</tr>
<tr>
<td>70</td>
<td>120</td>
</tr>
<tr>
<td>60</td>
<td>100</td>
</tr>
<tr>
<td>50</td>
<td>80</td>
</tr>
<tr>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>

2.6 Dewpoint measurement in natural gas

Valid only for EE300Ex-HT6S...Gx (Special option for natural Gas application)
The accuracy of the dewpoint measurement is affected by the working pressure. The actual working pressure has to be set with the configuration software.
Menu item "Configuration" --> "Parameters"

Factory setting: 1013.25 mbar

2.7 Measurement of moisture in oil

Besides measurement in the air, the EE300Ex can be employed for measurement of both absolute water content (x) in ppm or relative water activity (aw) in oils.
The USA and Canada approval is valid for air and gas measurement only.
3. INSTALLATION IN AN EXPLOSION HAZARD AREA

3.1 General

The EE300Ex has been certified in accordance with the ATEX 2014/34/EU Directive, IECEX Scheme, , National Electrical Code ANSI-NFPA 70 (NEC[®]) and Canadian Electrical Code (CSA C22.1).

Devices in explosion-hazard areas are only permitted for operation in atmospheric conditions

-20 °C (-4°F) ≤ T ≤ 40 °C (104 °F)

0.8 bar (12 psi) ≤ p ≤ 1.1 bar (16 psi)

In air normally 21 % (V/V)

If suitable measures have been carried out in accordance with EN1127-1, the EE300Ex is also permitted for operation outside atmospheric conditions in line with the manufacturer’s instructions.

When conducting measurements in explosion-hazard areas, the EE300Ex must always be connected via intrinsically safe power supply devices or protective barriers. Even if only the measurement probe is installed in the explosion hazard area, the EE300Ex must be supplied using intrinsically safe equipment.

Rules for the interconnection of intrinsically safe electrical circuits in accordance with EN60079-14, EN60079-25 and IEC60079-14, IEC60079-25 (proof of intrinsic safety in the system description) and national requirements should be followed. For the U.S., Canada see Controll Drawing M1_1309080 and ANSI/ISA RP12.6.01, NEC and CEC.

If a risk analysis of the installation in line with EN1127-1 reveals a risk of lightning strike, an overvoltage protection device should be installed in the intrinsically safe circuits. Requirements for the installation of overvoltage protective devices can be found in the standard EN60079-25. For the U.S., Canada see ANSI/ISA RP12.6.01, NEC and CEC.

Example of an overvoltage protection device

Manufacturer: Dehn
Type: ITAK EXI BXT 24

to protect intrinsically safe measurement circuits for 2DA

C2 nominal discharge surge current: (8/20) 20 kA
Nominal voltage: 30 V DC
max. permiss. input voltage: 33 V DC
max. permiss. input current: 0.5 A
Alu housing, grey, protection rating: IP 65

ATEX Approval:
II 2 (1) G Ex ia IIC T4, T5, T6
II 2 G Ex ib IIC T4, T5, T6

Follow the installation instructions from DEHN!

Each EE300Ex is provided with its production date. The production date is shown on the label (after the series) as follows:

WWYYYY WW week of the year of construction
YYYY year of construction
3.2 Housing assembly

The EE300Ex housing has a two-part construction.
- Lower housing section with the connection and earthing terminals.
- Upper housing section with the electronics and measurement probe.

3.2.1 Drilling plan for the housing

The lower housing section is mounted using 4 screws. Screw diameter < 4.5mm (0.18")

If the upper housing section is removed from the hazard area, e.g. for a calibration, the empty lower section should be protected against dirt and electrostatic charge via a cover HA011401.

Unused cable glands should be sealed using a sealing plug.
Assembly in category 1 (zone 0 / 20); Division 1

Only intrinsically safe power supply devices are approved to supply EE300Ex in category 1 or Division 1.

In areas belonging to gas group IIC or Class I, Division 1, Group A, B, it must be ensured that during installation and operation, the possibility of impact and friction sparks has been excluded in rarely occurring fault situations.

Work on open transmitter must only be performed if it is guaranteed that no explosive atmosphere is present.

In category 1 or Division 1, the sensor line should be laid in an earthed metallic protective hose.

With Group III or Class II, III, ensure that there are no dust or fibers and flyings deposits in the protective tube.

CH1 and CH2 must be galvanically isolated from one another during operation.

There is no display permitted in the gas hazard area EPL Ga for Group IIC or Class I, Division 1, group A, B and in the dust hazard area for groups IIIA, IIIB and IIIC or Class II, III.

The probe for wall mounting is not permitted to be used for Zone or Division bushing.

EE300Ex (wall mounting) 1 channel via intrinsically safe power supply device:

Hazardous location T4...T1

Zone 0 / 20
no display with EPL Da, Db, Dc and Ga IIC
Division 1
no display in Class II, III and Class I, Division 1, Group A, B

Unclassified location

Control

Power supply

EE300Ex (with remote sensing probe) 2 channels via intrinsically safe power supply device:

Hazardous location T6...T1

Zone 0 / 20
Division 1
Class I, II, III
Group A, B, C, D, E, F, G
up to T6 if EE300Ex is in unclassified location.

Zone 1 2 / 21 22
Division 2
Class I, II, III
Group A, B, C, D, E, F, G

Unclassified location

Control

Power supply
3.4 Assembly in categories 2 and 3 (Zone 1 2 / 21 22), Division 2

Only intrinsically safe power supply devices and protective barriers are approved to supply EE300Ex in category 2 and 3 or Division 2.

No display is permitted in the dust hazard area (Group III) or Class II, III.

CH1 and CH2 must be galvanically isolated from one another during operation.

The probe for wall mounting is not permitted to be used for Zone or Division bushing.

EE300Ex (wall mounting) 1 channel via intrinsically safe power supply device:

EE300Ex (with remote sensing probe) 2 channels via intrinsically safe power supply device:
3.5 Mounting the measurement sensor

To mount the transmitter, select a location with stable conditions, i.e. protected against direct sunlight or rain. The measurement probe should be fitted at a location where representative measured values are to be anticipated for the process.

The measurement probe must be mounted horizontally or vertically (downwards). If possible, a drip tray should be placed into position before every installation.

A temperature drop along the measurement sensor should be avoided.

Mechanical ambient conditions
When installing the sensor, the mechanical influences of the installation site should be taken into account. (e.g. vibrations, shock loads via startup processes, temperature fluctuations,...).
If the mechanical stability or seal on the probe cannot be ensured, additional mechanical fastening or support should be included.

The probe cable and connection cable should be handled and laid in the hazard area so that no static charges can arise (e.g. metal hose).

Filter caps
The following filter caps ensure sufficient protection against electrostatic discharges relating to explosion group IIB, but are not permitted for use in EPL Ga IIC or Class I, Division 1, Group A,B:
- PTFE filter (order code E)
- PTFE filter on metal body (order code K)
- H2O2 filter (order code L)

The following filter caps are permitted for use in EPL Ga IIC or Class I, Division 1, Group A,B:
- Stainless steel sinter filter (order code D)
- Stainless steel lattice filter (order code I)
- Oil filter (order code M)

3.5.1 Mounting the clamping ring screw connection

The clamping ring screw connection can be used as Zone or Division bushing. To do this, the screw connection is screwed into the isolating wall and must have a seal tightness of IP67.

Safety instructions for pressure-tight screw connection:
- The system must not be vented by releasing the union nuts.
- Do not assemble and tighten pipe screw connections if the system is under pressure.
- Always use the correct thread sealant on conical pipe threads.
- Never rotate the screw connection body. Instead, hold the screw connection body securely and turn the union nut.
- Avoid unnecessary disassembly of unused pipe screw connections.
Installation instructions:

- Tighten the union nuts finger-tight.
- Mark the union nuts at the 6 o’clock position.
- Hold the screw connection body tight and tighten the union nuts with 1 ¼ turns to the 9 o’clock position.

Assembly with high pressure applications and applications with a high security factor:

- Tighten the union nuts until the pipe can no longer be turned by hand or can no longer be moved axially in the fitting.
- Mark the union nuts at the 6 o’clock position.
- Hold the screw connection body tight and tighten the union nuts with 1 ¼ turns to the 9 o’clock position.

Re-mounting:

- Slide measurement sensor with clamping rings into the fitting as far as it will go.
- Tighten the nut “fingertight”, then tighten by approx. a ¼ turn using a spanner.

3.5.2 Mounting with mounting flange (optional)

The assembly flange must not be used as Zone or Division bushing, i.e. it must only be used for fastenings and bushings in explosion-hazard areas of the same category.

The measurement sensor must be mounted horizontally or vertically (downwards). If possible, a drip tray should be placed into position before every installation.
3.5.3 Mounting the probe using ball valve (optional)

With ball valve mounting, the system being measured does not need to be emptied or brought to a standstill to mount or remove the probe. Install the sensor head against the flow direction.

It is only permitted to use one ball valve that is approved for use in explosion hazard areas.

The process pressure must be below 10bar (145psi).

The two metal sealing rings (see figure) should be replaced each time after being screwed on.

MOUNTING THE PROBE:

The mounting temperature is not permitted to deviate from the usage temperature by more than ±40°C (104°F).

- Mount the probe with the ball valve closed.
- Open the ball valve.
- Insert the sensor head through the ball valve into the process. A manual pressing tool is recommended at high pressure.
- To ensure that the probe is securely installed, the closing nut must be tightened at a defined torque of 30Nm. If there is no torque wrench present, tighten the closing nut by hand as far as possible. Turn another ~50° using a suitable open-ended spanner. A tightening torque that is too low results in a lower clamping force (fixing force) of the clamp sleeve. There is therefore a risk of injury due to the probe tube being driven out. An excessively high tightening torque can result in the permanent deformation of the clamping sleeve and the probe tube. This makes the removal and re-mounting process more difficult or impossible.

REMOVING THE PROBE:

- Hold the probe tube tight. (Caution: Do not bend the connection cable)
- Slowly unfasten the closing nut using a spanner (spanner size 24) until the drive-out force affects the tube. Never fully remove the closing nut when installed, and instead screw on only as far as possible!
- After the sensor head has been removed from the process as far as it will go, close the ball valve.
- The probe can be fully removed.

Both for mounting and removal, ensure that O-ring 1 is correctly installed. If damaged, O-ring 1 can be replaced by the user. O-ring type: 13x1.5mm (0.5”x 0.06”) - FKM-60 Spare part order no. HA050308
3.5.4 Mounting the probe using sensor retraction tool (optional)

Observe the operating instructions of the sensor retraction tool! It may only be used the sensor retraction tool ZM-WA-025-040-EST or BG-WA-103-045-EST. With the sensor retraction tool 250 bar it may only be used the sensor probe model U.

The delivery scope of the sensor probe includes the copper sealing for the Swagelok screw connection.

Make sure that the sensor retraction tool is in "SERVICE" position (see manual of the sensor retraction tool).

- Before installing the sensor, dismount the closing plug ½" by means of a hexagonal wrench 10 mm and “park” it at the thread hole M10 designed for that purpose.

- Insert the sensor with copper sealing Swagelok and protective cover into the sensor retraction tool until the stop position.

- Fasten the Swagelok screw connection ½" in the sensor retraction tool with the open-jaw wrench (wrench size 27mm). Do not forget to check the copper sealing!

- At first manually tighten the Swagelok union nut with cutting ring. Now adjust the sensor.

- By means of a screw wrench, tighten the union nut just firmly enough that the screw connection cannot be moved manually any longer. Mark the union nuts at the 6 o’clock position.

- Hold the screw connection body tight and tighten the union nuts with 1 ¼ turns to the 9 o’clock position.

- To mount the protective cover for the Swagelok protective cover, proceed in the following order:
 - Push the protective cover down to the adjusting device: screws must point to the flat area (wrench size 26mm)
 - Tighten screws M3.
3.6 Calculation of the maximum cable length

Intrinsically safe power supply device STAHL 9160/13-11-11 (order code HA011405)

Technical data for EE300Ex

Supply voltage: $U_{Bin} = 9V + RL * 0.02A$
Max. current: $I_{out max} = 20mA$

Technical data for STAHL 9160/13-11-11

Nominal operating voltage: $U_N = 24V$
Input voltage for transmitter: $U_S = 16V$
Max. load: $R_L = 600Ohm$

Calculation of maximum cable length of intrinsically safe input isolator

Cable 0.75mm² (0.01in²) (example):
Load resistance (load): $R_cable = 0.0267Ω/m$
Input voltage for transmitter: $U_S = 16V$
Min. supply voltage EE300Ex: $U_{Bmin} = 9V + 200Ω * 0.02A = 13V$
Maximum voltage drop on cable: $U_{cable} = U_S - U_{Bmin} = 16V - 13V = 3V$
Total cable resistance:
$R_{cable total} = R_{cable} * L_{total} * 2$ (supply and return line)
$U_{drop} = R_{cable total} * I_{out max} = R_{cable} * L_{total} * 2 * I_{out max}$
Transform in accordance with L_{total}
$L_{total} = U_{drop} / (I_{out max} * 2 * R_{cable})$
$L_{total} = 3V / (0.02A * 2 * 0.0267Ω/m)$
$L_{total} = 2800m$ maximum cable length

Caution: this is the max. length without allowing for the intrinsic safety. (cable capacity and inductivity may reduce the length even further)

3.7 Selecting a suitable power supply device for ATEX Zone concept:

Example for evidence of the intrinsic safety in accordance with EN60079-14:2008 12.2.5.2, EN60079-25:2010 13.1. CH1 and CH2 are galvanically separated, meaning the evidence of the intrinsic safety can only be carried out using appropriate equipment.

Installation assumption:
Installing the EE300Ex (without display) in Zone 0

Connecting cable length: 300m (984ft)
Explosion group: IIC
Temperature class: T4
Both electric circuits laid in one cable.

Intrinsically safe power supply device STAHL 9160/13-11-11
(Excerpt from the EC type approval test certificate)
Certified to:
• II 3 (1) G Ex nA nC [ia Ga] IIC T4 Gc (certificate number: DMT 03 ATEX E 010 X)
• II (1) D [Ex ia Da] IIIC (certificate number: DMT 03 ATEX E 010 X)

Entity parameters:
$U_0 = 27V$
$I_0 = 88mA$
$P_0 = 576mW$
$C_0 IIC = 90nF$
$C_0 IIB = 705nF$
$L_0 IIC = 2.3mH$
$L_0 IIB = 17mH
Technical data for connecting cable

Cable type: ÖLFLEX® EB CY from manufacturer Lapp Kabel
Cable cross-section: 4 x 0.75mm² (0.06x0.01in²)
Operating capacity: 110nF/km
Inductivity: 0.65mH/km

Cable capacity for 300m (984ft):
\[CK = 0.3\text{km} \times 110\text{nF/km} = 33\text{nF} \]
Cable inductivity for 300m (984ft):
\[LK = 0.3\text{km} \times 0.65\text{mH/km} = 0.195\text{mH} \]

Technical data for EE300Ex (extract from the EC type approval test certificate)
Certified to:
II 1 G Ex ia IIC T4 Ga
II 1 D Ex ia IIIC T80°C Da

Entity parameters:
\[U_i = 28\text{V} \]
\[I_i = 100\text{mA} \]
\[P_i = 700\text{mW} \]
\[C_i = 2.2\text{nF} \]
\[L_i = \text{negligibly small} \]

Evidence of the intrinsic safety in accordance with EN60079-11:2012, EN60079-25:2010 (Appendix A)
\[U_0 = 27\text{V} \leq U_i = 28\text{V} \rightarrow \text{ok} \]
\[I_0 = 88\text{mA} \leq I_i = 100\text{mA} \rightarrow \text{ok} \]
\[P_0 = 576\text{mW} \leq P_i = 700\text{mW} \rightarrow \text{ok} \]
\[C_0 = 90\text{nF} \geq 2.2\text{nF} + 33\text{nF} \rightarrow \text{ok} \]
\[L_0 = 2.3\text{mH} \geq 0\text{mH} + 0.195\text{mH} \rightarrow \text{ok} \]

Protection level of the intrinsically safe current circuit is is met!

Evidence of the intrinsic safety in accordance with EN60079-11:2012, EN60079-25:2010 (Appendix A)

For intrinsically safe electric circuits with linear sources, simplified evaluation rule:
- each half value of \(C_0 \) and \(L_0 \) can be used, limited to \(C_0 = 600\text{nF} \) (IIC) and \(1\mu\text{F} \) (IIB)
- \(L_i \leq 1\% \) of \(L_0 \)
- \(C_i \leq 1\% \) of \(C_0 \)

Use reduced \(C_0 \) and \(L_0 \) values for mixed electric circuits

\(L_i = \text{negligibly small} \rightarrow \text{no reduced } C_0 \text{ and } L_0 \text{ values required!} \)
4. **ELECTRICAL CONNECTIONS**

It is essential that installation, electrical connection, commissioning, operation and maintenance in explosion hazard areas are only carried out by trained specialist personnel authorised to do so by the system operator.

Installation in accordance with NEC or CEC with consideration of the Control Drawing M1_1309080

For installation in an explosion hazard area, it is essential to ensure that all relevant standards are observed. For the installation, standard EN60079-14, EN60079-25 or IEC60079-14, IEC60079-25 is to be applied, and for repair and maintenance, the standards EN60079-17 or IEC60079-17 and EN60079-19 or IEC60079-19 as well as the relevant national regulations should be applied.

Installation in the U.S. must be carried out in accordance with ANSI / ISA RP 12.6.01-2003 and the National Electrical Code (NEC). Installation in Canada must be carried out in accordance with the Canadian Electrical Code (CEC).

The EE300Ex is designed as a 2-wire current transmitter. **CH1 should always be connected**, CH2 can also be activated if required. Both outputs are galvanically isolated.

Cable ends must be fitted with the appropriate wire-end sleeves. After the connection in the terminal, an air gap of at least 2mm (0.08") must be left between the strands and a 6mm (0.2") air gap between channels 1 and 2.

Changes to the probe cable length are only permitted to be carried out by the manufacturer (transmitter will need to be re-calibrated).

4.1 Connecting cable

A shielded cable should be used. The shield should be laid on one side with the EE300Ex.

The cable must conform to the following specifications (requirements of EN60079-14, EN60079-25) for ATEX:

- Maximum cross-section 1.5mm² (0.02in²)
- Single stranded wire diameter: ≥ 0.1mm (0.004")
- Test voltage wire-wire: ≥ 500V AC eff.
- Test voltage wire-shield (if a cable with shield is being used): ≥ 500V AC eff.
- Cable inductivity, cable capacity and conductor resistance are to be evaluated in the evidence of intrinsic safety
- Flame-resistant acc. to IEC60332-1-2

Additional requirements if both channels (CH1, CH2) are connected in a common cable:

- The test voltage wire-wire: must be ≥ 1000V AC eff.
- The radial thickness of the insulation must be ≥ 0.2mm (0.008”).
- The conductor insulation must withstand 500V AC eff.

➤ Cable ÖLFLEX® EB CY from manufacturer LAPP KABEL meets this requirement on request.
4.2 Terminal assignment EE300Ex

4.3 Configuration adapter

The digital interface is used only for device configuration and customer adjustment. The configurator software and the drivers are available for download free of charge from our website http://www.epluse.com/en/service-support/download-center/.

The EE300Ex in combination with the configurator software is only permitted for use outside the hazard area.

It may only be used the cable with protective circuit (aluminum housing on the 8 pin connector).

Connection from CH1 is NOT required for communication.

RS232 (the external power supply required is included as standard with the configuration adapter):

USB:

If the upper housing section of the EE300Ex with the electronics and measurement probe is removed, the lower housing section with the blanking plate (HA011401) should be sealed to protect against dirt and electrostatic charge.

4.4 Calibration of the current loop

Only appropriately approved multimeters are permitted for calibration in hazardous areas. During measurement with these multimeters, ensure that the requirements of the system description (proof of intrinsic safety) remain in force.
4.5 Grounding and potential equalization

The EE300Ex must be integrated into the potential equalization to avoid hazards from electrostatic charges. It shall apply the requirements of the standards EN60079-14, EN60079-25 or IEC60079-14, IEC60079-25. With a remote sensing probe, the probe should also be integrated with the screw connection with a maximum of 1 MΩ in the potential equalization.

The ground conductor or the potential equalization connection must have a cross-section of 4mm² (0.06in²) for the external earthing. With stranded wires, the cable ends should be fitted with suitable wire-end sleeves.

Intrinsically safe barrier ground must be less than 1 ohm.

For installation in the U.S. internal earthing should be used. The wire cross-sectional must be in accordance with NEC Section 250.122.

External grounding:

Internal grounding:

The braided screen should be turned back via the plastic insert on the cable connection. The introduction of the plastic insert presses the braided screen onto the interior wall of the metallic part.
5. **DISPLAY (OPTIONAL)**

There is no display permitted in the gas hazard area for EPL Ga IIC or Class I, Division 1, Group A, B and in the dust hazard area for IIIA, IIIB and IIIC or Class II, III.

Example of EE300Ex wall mounting in Zone 1 or 2 or Division 2

Hazardous location T4...T1

Unclassified location

Example of EE300Ex mounting of remote sensing probe in Zone 0 or Division 1 and transmitter in Zone 1 or 2 or Division 2

Hazardous location T4...T1

Unclassified location

The bushing must conform to the hazard requirements of a Zone or Division implementation. The supplied screw connection meets this requirement!
6. MAINTENANCE

It is essential that operation and maintenance in explosion hazard areas are only carried out by trained specialist personnel authorised to do so by the system operator.

For maintenance and repair work in explosion hazard areas, the standards EN60079-17 or IEC60079-17, EN60079-19 or IEC60079-19 and the relevant national regulations must be applied.

In the U.S. maintenance and inspection must be carried out in accordance with ANSI / ISA RP12.6.01-2003 and the NEC. In Canada maintenance and inspection must be carried out in accordance with CEC.

6.1 Filter replacement

The protective filter should be cleaned or replaced periodically, in particular whenever it has been noted that the response time has become longer. When replacing a filter, ensure that the sensor is NOT touching the metallic filter cap!

6.2 Cleaning

6.2.1 Cleaning the display

To clean the display screen, use a damp cloth to avoid static.

6.2.2 Cleaning the sensor

Thanks to the very robust design of the sensor element, any cleaning required is very easy to carry out. This can be carried out using suitable chemicals such as isopropyl alcohol (normal industrial product). After cleaning in isopropyl alcohol, dip the sensor element in water and allow to dry. The cleaning time should not be more than 2 mins. To avoid damaging the sensor layer, the use of mechanical equipment is not permitted!

When screwing on the filter cap, ensure that the sensor is NOT touching the metallic filter cap!

6.3 Customer adjustment of humidity and temperature

See manual EE-PCS (product configuration software)

6.4 Display error messages

Self diagnosis via display (if available):

Error 1 → Humidity sensor element damaged
Error 2 → Humidity sensor element condensation
Error 3 → Temperature Sensor element damaged
Error 4 → Temperature sensor element short circuit

6.5 Ordering information for accessories

<table>
<thead>
<tr>
<th>Designation</th>
<th>Order code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stainless steel sinter filter</td>
<td>HA010103EX</td>
</tr>
<tr>
<td>PTFE filter</td>
<td>HA010105</td>
</tr>
<tr>
<td>Filter for moisture measurement in oil</td>
<td>HA010110</td>
</tr>
<tr>
<td>Stainless steel lattice filter</td>
<td>HA010109</td>
</tr>
<tr>
<td>Ball valve ISO 1/2” interior thread with ATEX approval</td>
<td>HA011403</td>
</tr>
<tr>
<td>Configuration adapter for connection to the PC</td>
<td>EE-PCA</td>
</tr>
<tr>
<td>Connection cable with protective circuit between EE300Ex and configuration adapter</td>
<td>HA011061</td>
</tr>
<tr>
<td>Blanking plate for lower housing part</td>
<td>HA011401</td>
</tr>
<tr>
<td>Protective barrier STAHL 9002/13-280-093-001</td>
<td>HA011410</td>
</tr>
<tr>
<td>Intrinsically safe 1-channel power supply device STAHL 9160/13-11-11</td>
<td>HA011405</td>
</tr>
<tr>
<td>Intrinsically safe 2-channel power supply device STAHL 9160/23-11-11</td>
<td>HA011406</td>
</tr>
<tr>
<td>Sealing plug for unused cable screw connection - M16 (0.31”)</td>
<td>HA011402</td>
</tr>
</tbody>
</table>
Sealing plug for unused cable screw connection - M20 (12mm (0.47"))
Mounting flange 12mm (0.24")
Mounting flange 6mm (0.24")
1/2" ISO screw connection 12mm (0.47")
1/2" NPT screw connection 12mm (0.47")
1/2" welded connection 12mm (0.47")
1/2" ISO screw connection 6mm (0.24")
1/2" NPT screw connection 6mm (0.24")
O-ring for sliding fitting sensor retraction tool 250 bar
sensor retraction tool 40 bar

7. TECHNICAL DATA - EE300EX-HT

Measuring values

Relative humidity
Humidity sensor 1) HC1000
Measuring range 0...100% RH
Accuracy 2) (including hysteresis, non-linearity and repeatability, traceable to international standards, administered by NIST, PTB, BEV...)

-15...40°C (5...104°F) ± (1.3 + 0.3%*mv) % RH
-15...40°C (5...104°F) >90% RH ± 2.3% RH
-25...70°C (-13...104°F) ± (1.4 + 1%*mv) % RH
-40...180°C (-40...356°F) ± (1.5 + 1.5%*mv) % RH

Temperature dependence electronics typ. 0.03% RH/°C
Response time with filter at 20°C (68°F) / t90 < 30 sec.

Temperature

Temperature sensor Pt1000 (Tolerance class A, DIN EN 60751)
Measuring range sensor head wall mounting: -40...60°C (40...140°F)
remote sensing probe: -40...180°C (40...356°F)

Accuracy
Temperature dependence of electronics typical 0.005 °C/°C

Max. selectable Scaling Range

<table>
<thead>
<tr>
<th>from</th>
<th>to</th>
<th>wall mounting</th>
<th>remote sensing probe</th>
<th>unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Td</td>
<td>-40</td>
<td>(-40)</td>
<td>60 (140)</td>
<td>100 (212)</td>
</tr>
<tr>
<td>Tw</td>
<td>0</td>
<td>(32)</td>
<td>60 (140)</td>
<td>100 (212)</td>
</tr>
<tr>
<td>e</td>
<td>0</td>
<td>(0)</td>
<td>200 (3)</td>
<td>1100 (15)</td>
</tr>
<tr>
<td>r</td>
<td>0</td>
<td>(0)</td>
<td>425 (2900)</td>
<td>959 (9999)</td>
</tr>
<tr>
<td>dv</td>
<td>0</td>
<td>(0)</td>
<td>150 (60)</td>
<td>700 (300)</td>
</tr>
<tr>
<td>H</td>
<td>-50</td>
<td>(-15000)</td>
<td>400 (150000)</td>
<td>2800 (999999)</td>
</tr>
<tr>
<td>aw</td>
<td>0</td>
<td>-</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>0</td>
<td>-</td>
<td>100000</td>
<td>ppm</td>
</tr>
</tbody>
</table>

Dew/Frost point temp. Td -40...60°C (-40...140°F)
Wet bulb temperature Tw 0...60°C (40...140°F)
Water vapour pressure e 0...1100 mbar (0...15 ps)
Mixing ratio r 0...425 g/kg (0...2900 gr/lb)
Absolute humidity dv 0...150 g/m² (0...60 gr/ft²)
Specific enthalpy H -50...400000 kJ/kg (0...999999 Btu/lb)
Water activity aw 0...1
Water content x 0...100000 ppm

Outputs

freely selectable and scalable outputs 2 x 4 - 20 mA (2-wire) galvanically isolated
Output 1 (CH1) must be connected! R_L=(Vcc-9V)/20mA

General

Supply voltage Vcc max=28VDC
Current consumption max 20mA per channel
Pressure range for pressure tight sensor probe refer to model
Serial interface for communication RS232
System requirements for software WINDOWS XP or later
Protection class of housing IP65; NEMA 4
Cable gland M16 for cable diameter 5 - 10 mm (0.2 - 0.4")
M20 for cable diameter 10 - 14 mm (0.4 - 0.55")
Electrical connection screw terminals max. 1.5 mm² (AWG 16)
Temperature range sensor headaccording measuring range
electronic -40...60°C (-40...140°F)
electronic with display -20...60°C (-4...140°F)
Storage temperature range electronic and sensor head -20...60°C (-4...140°F)
Electromagnetic compatibility according EN61326-1 EN61326-2-3 ICES-003 ClassB
Industrial Environment FCC Part15 ClassB

Material

Housing Stainless Steel 1.4404
Probe cable PTFE
Probe (without Filter) Stainless Steel

1) Refer to the working range of the humidity sensor.
2) The accuracy statement includes the uncertainty of the factory calibration with an enhancement factor k=2 (2-times standard deviation).
3) The accuracy was calculated in accordance with EA-4/02 and with regard to GUM (Guide to the Expression of Uncertainty in Measurement).

3) Configuration adapter EE-PCA and cable HA011061 necessary.
Measuring values

Temperature

<table>
<thead>
<tr>
<th>Temperature sensor</th>
<th>Pt1000 (Tolerance class A, DIN EN 60751)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring range sensor head</td>
<td>wall mounting: -40...60°C (-40...140°F)</td>
</tr>
<tr>
<td>Accuracy(^1)</td>
<td></td>
</tr>
</tbody>
</table>

Temperature dependence of electronics

Typ. 0.005 °C/°C

Outputs

| Scaleable analogue output | 4 - 20 mA (2-wire) | \(R_l = (V_{cc}-9V)/20mA \) |

General

<table>
<thead>
<tr>
<th>Supply voltage</th>
<th>(V_{cc\ min} = (9 + R_l \cdot 0.02)V_{DC}) (V_{cc\ max} = 28V_{DC})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current consumption</td>
<td>max 20 mA</td>
</tr>
<tr>
<td>Pressure range for pressure tight sensor probe</td>
<td>0.1...20 bar (1.5...300psi)</td>
</tr>
<tr>
<td>Serial interface for communication (^2)</td>
<td>RS232</td>
</tr>
<tr>
<td>System requirements for software</td>
<td>WINDOWS XP or later</td>
</tr>
<tr>
<td>Protection class of housing</td>
<td>IP65; NEMA 4</td>
</tr>
<tr>
<td>Cable gland</td>
<td>M16 for cable diameter 5 - 10 mm (0.2 - 0.4")</td>
</tr>
<tr>
<td></td>
<td>M20 for cable diameter 10 - 14 mm (0.4 - 0.5")</td>
</tr>
<tr>
<td>Electrical connection</td>
<td>screw terminals max. 1.5 mm(^2) (AWG 16)</td>
</tr>
</tbody>
</table>

Temperature range

Sensor head according measuring range:
- Electronic: -40...60°C (-40...140°F)
- Electronic with display: -20...60°C (-4...140°F)

Storage temperature range

Electronic and sensor head: -20...60°C (22...140°F)

Electromagnetic compatibility according

<table>
<thead>
<tr>
<th>EN61326-1</th>
<th>EN61326-2-3</th>
<th>ICES-003 Class B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrial Environment</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Material

<table>
<thead>
<tr>
<th>Housing</th>
<th>Stainless steel 1.4404</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probe cable</td>
<td>PTFE</td>
</tr>
<tr>
<td>Temperature probe</td>
<td>Stainless steel 1.4541</td>
</tr>
</tbody>
</table>

\(^1\) The accuracy statement includes the uncertainty of the factory calibration with an enhancement factor \(k = 2 \) (2-times standard deviation). The accuracy was calculated in accordance with EA-4/02 and with regard to GUM (Guide to the Expression of Uncertainty in Measurement).

\(^2\) Configuration adapter EE-PCA and cable HA011061 necessary.
9. ATEX CERTIFICATE

(1) EC Type Examination Certificate

(3) EC Type Examination Certificate Number:

TPS 13 ATEX 38892 003 X

(4) Equipment: Humidity and Temperature Transmitter Type: EE300Ex

(5) Manufacturer: E+E Elektronik Ges.m.b.H.

(6) Address: Langwiesen 7, 4209 Engerwitzdorf, Austria

(7) This equipment and any acceptable variation thereto are specified in the schedule to this certificate and the documents therein referred to.

(8) TÜV SÜD Product Service GmbH, notified body No. 0123 in accordance with Article 9 of the Council Directive 94/9/EC of March 23rd 1994, certifies that this equipment has been found to comply with the Essential Health and Safety Requirements relating to the design and construction of equipment and protective systems intended for use in potentially explosive atmospheres, given in Annex II of the Directive.

The examination and test results are recorded in the confidential report 71366133

(9) Compliance with the Essential Health and Safety Requirements has been assured by compliance with:

EN 1127-1:2011
EN 60079-11:2007
EN 60079-0:2009
EN 61241-11:2006

(10) If the sign “X” is placed after the certificate number, it indicates that the equipment is subject to special conditions for safe use specified in the schedule to this certificate.

(11) This EC Type Examination Certificate relates only to the design and the construction of the specified equipment in accordance with Directive 94/9/EC. Further requirements of this Directive apply to the manufacture and supply of this equipment.

(12) The marking of the equipment shall include the following:

Equipment:

Ex II 1G Ex ib IIC T4 Ga
Ex II 1D Ex ib IIC T 70°C Da IP65

Equipment with Display:

Ex II 2 G Ex ib IIC T4 Gb
Ex II 1G Ex ia IIB T4 Ga

Sensor:

Ex II 1G Ex ia IIC T6 Ga
Ex II 1D Ex ib IIC T 70°C Da IP65

Certification body: Stuttgart, 05.03.2013

Andres Pfell

EC Type Examination Certificate without signature and official stamp shall not be valid. The certificates may be circulated only without alteration. Extracts or alterations are subject to approval by TÜV SÜD Product Service GmbH. In case of dispute, the German text shall prevail.

(Document no.: TPS 13 ATEX 38892 003 X)

The document is internally administrated under the following number: EX5 13 02 38892 003

TÜV SÜD Product Service GmbH · Zertifizierstelle · Riedstraße 85 · 80339 München · Germany
Schedule

EC Type Examination Certificate TPS 13 ATEX 38892 003 X

Description of equipment:

The humidity and temperature transmitter EE300Ex is dedicated for use in industrial applications. The transmitter is available as a fixed unit or with remote sensing probe. The EE300Ex transmitter is to be powered by an intrinsically safe power source.

Technical and electrical data:

<table>
<thead>
<tr>
<th>Transmitter EE300Ex</th>
<th>Kenndaten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage (Ui)</td>
<td>28 V</td>
</tr>
<tr>
<td>Input power (Pi)</td>
<td>700 mW</td>
</tr>
<tr>
<td>Input current (li)</td>
<td>100 mA</td>
</tr>
<tr>
<td>Input capacitance (Ci)</td>
<td>2.2 nF</td>
</tr>
<tr>
<td>Input inductance (li)</td>
<td>negligible small</td>
</tr>
<tr>
<td>protection category of equipment</td>
<td>IPR5</td>
</tr>
<tr>
<td>Temperature range electronics</td>
<td>-40 ≤ Tamb ≤ +60°C</td>
</tr>
<tr>
<td>Temperature range for humidity and temperature probe</td>
<td>-60 ≤ Tamb ≤ +180°C</td>
</tr>
<tr>
<td>Temperature range for temperature probe</td>
<td>-70 ≤ Tamb ≤ +200°C</td>
</tr>
</tbody>
</table>

Test report: 71396133

Special conditions for safe use:

The EE300Ex transmitter with display may not be used in areas with explosive dust (IIIA,IIIb,IIIC).

The EE300Ex transmitter may only be operated with safety barriers.

In case of using both measurement channels, each channel must be driven separately via their own galvanic safety barriers.

For the use of the EE300Ex transmitter with remote probe in explosive area zone 0 the probe cable must be installed in a metallic, grounded protective tube.

The plastic filter cap may not be used in explosive area zone 0 with chemicals of the explosion group IIC.
The EE300Ex transmitter with the connector option may not be used in areas with explosive dust (IIC) and in explosive area zone 0 with chemicals of the explosion group IIC.

(18) **Essential health and safety requirements:**

met by standards

Certification body

Andreas Pfeil

Stuttgart, 05.03.2013

EC Type Examination Certificate without signature and official stamp shall not be valid. The certificates may be circulated only without alteration. Extracts or alterations are subject to approval by TÜV SÜD Product Service GmbH. In case of dispute, the German text shall prevail.

(Document no.: TPS 13 ATEX 38892 003 X)

The document is internally administrated under the following number: EX5 13 02 38892 003

TÜV SÜD Product Service GmbH · Zertifizierstelle · Rüdlerstraße 05 · 80339 München · Germany
1. Supplement to the EC Type Examination Certificate

(1) EC Type Examination Certificate Number:

TPS 13 ATEX 38892 003 X

(2) Equipment: Humidity and Temperature Transmitter Type: EE300Ex

(3) Manufacturer: E+E Elektronik Ges.m.b.H.

(4) Address: Langwiesen 7, 4209 Engewitzdorf, Austria

(5) Description: The humidity and temperature transmitter EE300Ex is dedicated for use in industrial applications. The transmitter is available with fix installed or with remote sensing probe. The humidity and temperature transmitter must be powered by an intrinsically safe power source, which shall be compatible with EE300Ex according to the entity concept. EE300Ex configuration and adjustment can be done using the E+E Product Configuration Adapter HA011061

(6) Supplement: Standard update to EN 60079-11:2012; Specification of temperature working range for the combined humidity and temperature probe and for the temperature probe.

Test 1: Total immersion in dust according to EN 60079-11:2012 paragraph 5.6.5

Test 2: Requirements for the E+E Product Configuration Adapter type HA011061 according to EN 60079-11:2012

Test 3: Approval of the silicone foam gasket for the enclosure

(7) Test results: The examination and test results are recorded in the confidential reports 713031470, 713030081 and 713038637.

(8) The compliance with the Essential Health and Safety Requirements is fulfilled according to:

EN 1127-1:2011
EN 60079-11:2012
EN 60079-0:2012
Working temperature range for the probes:

Specification of the temperature class „TKG“ for use in gas area exposed to explosion hazards and “TKD” for use in dust area exposed to explosion hazards as a function of the ambient temperature "Tamb" for the humidity and temperature probe and the temperature probe:

<table>
<thead>
<tr>
<th>TKG</th>
<th>TKD</th>
<th>Humidity and Temperature Probe</th>
<th>TKG</th>
<th>TKD</th>
<th>Temperature Probe</th>
</tr>
</thead>
<tbody>
<tr>
<td>T6</td>
<td>80°C</td>
<td>-40°C ≤ Tamb ≤ +60°C</td>
<td>T6</td>
<td>80°C</td>
<td>-70°C ≤ Tamb ≤ +60°C</td>
</tr>
<tr>
<td>T5</td>
<td>95°C</td>
<td>-40°C ≤ Tamb ≤ +75°C</td>
<td>T5</td>
<td>95°C</td>
<td>-70°C ≤ Tamb ≤ +75°C</td>
</tr>
<tr>
<td>T4</td>
<td>130°C</td>
<td>-40°C ≤ Tamb ≤ +110°C</td>
<td>T4</td>
<td>130°C</td>
<td>-70°C ≤ Tamb ≤ +110°C</td>
</tr>
<tr>
<td>T3</td>
<td>195°C</td>
<td>-40°C ≤ Tamb ≤ +175°C</td>
<td>T3</td>
<td>195°C</td>
<td>-70°C ≤ Tamb ≤ +175°C</td>
</tr>
<tr>
<td>T2</td>
<td>200°C</td>
<td>-40°C ≤ Tamb ≤ +180°C</td>
<td>T2</td>
<td>220°C</td>
<td>-70°C ≤ Tamb ≤ +200°C</td>
</tr>
<tr>
<td>T1</td>
<td>200°C</td>
<td>-40°C ≤ Tamb ≤ +180°C</td>
<td>T1</td>
<td>220°C</td>
<td>-70°C ≤ Tamb ≤ +200°C</td>
</tr>
</tbody>
</table>

(9) The mark of the equipment shall include the following:

Equipment: Ex II 1G Ex ia IIC T4 Ga Ex II 1D Ex ia IIC T 80°C Da

Equipment with Display: Ex II 2G Ex ia IIC T4 Gb Ex II 1G Ex ia IIB T4 Ga

Sensor: Ex II 1G Ex ia IIC T6-T1 Ga Ex II 1D Ex ia IIC T 80°C...220°C Da

(10) Additional special conditions for safe use:
The EE300Ex transmitter with display may not be used in areas with explosive dust (IIIa, IIIb, IIC) and in gas explosive area zone 0 with group IIa.

To prevent electrostatic charges the remote probe body must be earthed with maximum 1MD.

If EE300Ex is located outside the explosive area, following parameters apply:
For connection at plug X47, pin 2,3,4 against pin 1:
maximum voltage: \(U_m = \pm 28 \text{ V} \)
maximum current: \(I_m = \pm 100 \text{ mA} \)
or alternatively
connection via E+E Product Configuration Adapter HA011061.

(Certification Body for Explosion Protection) Filderstadt, 28.04.2014

Michael Reuschel

EC Type Examination Certificate without signature and official stamp shall not be valid.
The certificates may be circulated only without alteration.
Extracts or alterations are subject to approval by TÜV SÜD Product Service GmbH. In case of dispute, the German text shall prevail. (Document no.: TPS 13 ATEX 38892 003 X)
The document is internally administrated under the following number: EXS 13 01 38892 003

TÜV SÜD Product Service GmbH • Zertifizierstelle • Ridlerstraße 65 • 80339 München • Germany
EC Declaration of Conformity

EC-Type-Examination Certificate:

TPS 13 ATEX 38992 003 X

EE300Ex without display: II 1G Ex ia IIC T4 Ga II 1D Ex ia IIC T80°C Da
EE300Ex with display: II 2G Ex ia IIB T4 Gb II 1G Ex ia IIC T4 Ga
EE300Ex remote probe: II 1G Ex ia IIC T6-T1 Ga II 1D Ex ia IIC T80°C...220°C Da

The EC-Type-Examination was issued by TÜV SÜD Product Service GmbH (notified body No 0123), Rüdlerstraße 65, 80339 München / Germany.

We declare under our sole responsibility that these products (see product table above) correspond to the following regulations and their subsequent modifications:

<table>
<thead>
<tr>
<th>Directive Ref.</th>
<th>Directive area</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014/30/EU</td>
<td>Electromagnetic compatibility</td>
</tr>
<tr>
<td>2014/34/EU</td>
<td>Equipment and protective systems in potentially explosive atmospheres</td>
</tr>
<tr>
<td>2011/65/EU</td>
<td>RoHS</td>
</tr>
</tbody>
</table>

The products conform with the following standards or standardized documents:

<table>
<thead>
<tr>
<th>Standard</th>
<th>Year of ratification</th>
<th>Standard</th>
<th>Year of ratification</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN 1127-1</td>
<td>2011</td>
<td>EN 61326-1</td>
<td>2013</td>
</tr>
<tr>
<td>EN 60079-0</td>
<td>2012 / A11:2013</td>
<td>EN 61326-2-3</td>
<td>2013</td>
</tr>
<tr>
<td>EN 60079-11</td>
<td>2012</td>
<td>EN 50581</td>
<td>2012</td>
</tr>
</tbody>
</table>

Designed for use in industrial environment.

Affixing of the CE marking (for the first time): 2013

Test Report: Conformity_EE300Ex_03.docx
Modification:.............Directive update

Engerwitzdorf, April 20th, 2016

DI Timelthaler Wolfgang (business manager)
Birklbauer Martin (Ex-authorised person)
11. **IECEX CERTIFICATE OF CONFORMITY - COC**

for more information see http://www.iecex.com/
or our website http://www.epluse.com/ee300ex
CERTIFICATE OF CONFORMITY

1. HAZARDOUS (CLASSIFIED) LOCATION ELECTRICAL EQUIPMENT PER US REQUIREMENTS

3. Equipment: EE300Ex-series Humidity and Temperature Transmitter

4. Name of Listing Company: E+E ELEKTRONIK Ges.m.b.H

5. Address of Listing Company: Langwiesen 7 Engerwitzdorf 4209 Austria

6. The examination and test results are recorded in confidential report number:
 3049300 dated 2nd October 2017

7. FM Approvals LLC, certifies that the equipment described has been found to comply with the following Approval standards and other documents:

8. If the sign ‘X’ is placed after the certificate number, it indicates that the equipment is subject to specific conditions of use specified in the schedule to this certificate.

9. This certificate relates to the design, examination and testing of the products specified herein. The FM Approvals surveillance audit program has further determined that the manufacturing processes and quality control procedures in place are satisfactory to manufacture the product as examined, tested and Approved.

10. Equipment Ratings:
 Intrinsically Safe for Class I, II, III Division 1, Groups A, B, C, D, E, F, and G hazardous (classified) locations in accordance with drawing M1_1309080, Nonincendive for Class I, II, III Division 2, Groups A, B, C, D, E, F, and G hazardous (classified) locations, Intrinsically Safe for Class I, Zone 0, Group IIC hazardous (classified) locations in accordance with drawing M1_1309080, Intrinsically Safe for Class II and III, Zone 20, Group IIIC hazardous (classified) locations in accordance with drawing M1_1309080, IP65 with an ambient temperature

Certificate issued by:

J. E. Marquedant
VP, Manager, Electrical Systems

30 November 2017

To verify the availability of the Approved product, please refer to www.approvalguide.com

THIS CERTIFICATE MAY ONLY BE REPRODUCED IN ITS ENTIRETY AND WITHOUT CHANGE

FM Approvals LLC, 1151 Boston-Providence Turnpike, Norwood, MA 02062 USA
T: +1 (1) 781 762 4300 F: +1 (1) 781 762 9375 E-mail: information@fmapprovals.com www.fmapprovals.com

F 347 (Mar 16)
11. The marking of the equipment shall include:

Equipment Group I: EE300Ex without display

- Class I, II, III, Division 1, Groups A, B, C, D, E, F and G; T4 Ta = -40°C to +60°C; Entity – M1_139080; IP65
- Class I, II, III, Division 2, Groups A, B, C, D, E, F and G; T4 Ta = -40°C to +60°C
- Class I, Zone 0, AEx ia IIC T4 Ta = -40°C to +60°C Ga; Entity – M1_139080; IP65
- Zone 20, AEx ia IIIC T131°C Ta = -40°C to +60°C Da; Entity – M1_139080; IP65

Remote Probe:
- Class I, II, III, Division 1, Groups A, B, C, D, E, F and G; T6…T1; Entity – M1_139080; IP65
- Class I, II, III, Division 2, Groups A, B, C, D, E, F and G; T6…T1
- Class I, Zone 0, AEx ia IIC T6…T1 Ga; Entity – M1_139080; IP65
- Zone 20, AEx ia IIIC T80°C Da; Entity – M1_139080; IP65

Equipment Group II: EE300Ex with display

- Class I, Division 1, Groups C, and D; T4 Ta = -40°C to +60°C; Entity – M1_139080
- Class I, Division 2, Groups A, B, C and D; T4 Ta = -40°C to +60°C; Entity – M1_139080
- Class I, Zone 0, AEx ia IIB T4 Ta = -40°C to +60°C Ga; Entity – M1_139080
- Class I, Zone 1, AEx ia IIC T4°C Ta = -40°C to +60°C Gb; Entity – M1_139080

Remote Probe:
- Class I, II, III, Division 1, Groups A, B, C, D, E, F and G; T6…T1; Entity – M1_139080; IP65
- Class I, II, III, Division 2, Groups A, B, C, D, E, F and G; T6…T1
- Class I, Zone 0, AEx ia IIC T6…T1 Ga; Entity – M1_139080; IP65
- Zone 20, AEx ia IIIC T80°C Da; Entity – M1_139080; IP65

12. Description of Equipment:

General - The EE300Ex transmitter is designed for gauge measurements of temperature and humidity in air. All signal outputs are available on two 4 to 20 mA analog outputs.

Construction - The EE300Ex transmitter consists of a single compartment electronics housing. The enclosure is of stainless steel and has an integrated or remote humidity and/or temperature sensor. The EE300Ex transmitter is designed for use with the Product Configuration Adapter (PCA) HA011061 in non-hazardous locations for software configuration.

THIS CERTIFICATE MAY ONLY BE REPRODUCED IN ITS ENTIRETY AND WITHOUT CHANGE
Ratings - The EE300Ex transmitter operates at 6.4-28 Vdc (700mW). The transmitters are rated for use in an ambient temperature range of -40°C to +60°C. The transmitter probe is rated for use in a process temperature range of -70°C to +200°C.

Equipment Group I: EE300Ex without display

EE300EX-HT6SAaxxxbcFMde
- **a** = Electrical Connection; B, C, F, G, H, I, V, W, X or Y
- **b** = Filter; C, D, E, I, J, K, L or M
- **c** = Sensor Protection; x or 1
- **d** = Special option; Blank or Gx
- **e** = Software Code: 11 Digits (Not Safety Relevant)

Entity parameters:

<table>
<thead>
<tr>
<th>Terminals</th>
<th>Vmax or Ui</th>
<th>Imax or li</th>
<th>Pi</th>
<th>Li</th>
<th>Ci</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH 1: + and -</td>
<td>6.4Vdc ≤ Ui ≤28Vdc</td>
<td>100mA</td>
<td>0.7W</td>
<td>0mH</td>
<td>2.2nF</td>
</tr>
<tr>
<td>CH 2: + and -</td>
<td>6.4Vdc ≤ Ui ≤28Vdc</td>
<td>100mA</td>
<td>0.7W</td>
<td>0mH</td>
<td>2.2nF</td>
</tr>
</tbody>
</table>

EE300EX-HT6SaxbcdefgFMhi
- **a** = Model; E, M, S or U
- **b** = Electrical Connection; B, C, F, G, H, I, V, W, X or Y
- **c** = Probe – Cable Length; A, B, C, E, F, G or H
- **d** = Probe Length; C, D, F, G, H, J, K or L
- **e** = Zone Feedthrough (probe fitting): x, A, B, C, F, H or D
- **f** = Filter; C, D, E, I, J, K, L or M
- **g** = Sensor Protection; x or 1
- **h** = Special option; Blank or Gx
- **i** = Software Code: 11 Digits (Not Safety Relevant)

Entity parameters:

<table>
<thead>
<tr>
<th>Terminals</th>
<th>Vmax or Ui</th>
<th>Imax or li</th>
<th>Pi</th>
<th>Li</th>
<th>Ci</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH 1: + and -</td>
<td>6.4Vdc ≤ Ui ≤28Vdc</td>
<td>100mA</td>
<td>0.7W</td>
<td>0mH</td>
<td>2.2nF</td>
</tr>
<tr>
<td>CH 2: + and -</td>
<td>6.4Vdc ≤ Ui ≤28Vdc</td>
<td>100mA</td>
<td>0.7W</td>
<td>0mH</td>
<td>2.2nF</td>
</tr>
</tbody>
</table>

Remote probe - Temperature Code:

<table>
<thead>
<tr>
<th>T-Code</th>
<th>Ambient Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>T6</td>
<td>-40°C < Ta < 60°C</td>
</tr>
<tr>
<td>T5</td>
<td>-40°C < Ta < 75°C</td>
</tr>
<tr>
<td>T4</td>
<td>-40°C < Ta < 110°C</td>
</tr>
<tr>
<td>T3</td>
<td>-40°C < Ta < 175°C</td>
</tr>
<tr>
<td>T2</td>
<td>-40°C < Ta < 180°C</td>
</tr>
<tr>
<td>T1</td>
<td>-40°C < Ta < 180°C</td>
</tr>
</tbody>
</table>

This certificate may only be reproduced in its entirety and without change.
US Certificate Of Conformity No: FM17US0302X

EE300EX-xT6SaxaxxxFMb
b = Software Code: 6 Digits (Not Safety Relevant)

Entity parameters:

<table>
<thead>
<tr>
<th>Terminals</th>
<th>Vmax or Ui</th>
<th>Imax or li</th>
<th>Pi</th>
<th>Li</th>
<th>Ci</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH 1: + and -</td>
<td>6.4Vdc ≤ Ui ≤ 28Vdc</td>
<td>100mA</td>
<td>0.7W</td>
<td>0mH</td>
<td>2.2nF</td>
</tr>
<tr>
<td>CH 2: + and -</td>
<td>6.4Vdc ≤ Ui ≤ 28Vdc</td>
<td>100mA</td>
<td>0.7W</td>
<td>0mH</td>
<td>2.2nF</td>
</tr>
</tbody>
</table>

EE300EX-xT6SaxbcdeFMf
a = Model; H
c = Probe – Cable Length; A, B, C, E, F, G or H
d = Probe length; E
e = Zone Feedthrough (probe fitting): x, I or J
f = Software Code: 6 Digits (Not Safety Relevant)

Entity parameters:

<table>
<thead>
<tr>
<th>Terminals</th>
<th>Vmax or Ui</th>
<th>Imax or li</th>
<th>Pi</th>
<th>Li</th>
<th>Ci</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH 1: + and -</td>
<td>6.4Vdc ≤ Ui ≤ 28Vdc</td>
<td>100mA</td>
<td>0.7W</td>
<td>0mH</td>
<td>2.2nF</td>
</tr>
<tr>
<td>CH 2: + and -</td>
<td>6.4Vdc ≤ Ui ≤ 28Vdc</td>
<td>100mA</td>
<td>0.7W</td>
<td>0mH</td>
<td>2.2nF</td>
</tr>
</tbody>
</table>

Remote probe - Temperature Code:

<table>
<thead>
<tr>
<th>T-Code</th>
<th>Ambient Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>T6</td>
<td>-70°C < Ta < 60°C</td>
</tr>
<tr>
<td>T5</td>
<td>-70°C < Ta < 75°C</td>
</tr>
<tr>
<td>T4</td>
<td>-70°C < Ta < 110°C</td>
</tr>
<tr>
<td>T3</td>
<td>-70°C < Ta < 175°C</td>
</tr>
<tr>
<td>T2</td>
<td>-70°C < Ta < 200°C</td>
</tr>
<tr>
<td>T1</td>
<td>-70°C < Ta < 200°C</td>
</tr>
</tbody>
</table>
SCHEDULE

US Certificate Of Conformity No: FM17US0302X

Equipment Group II: EE300Ex with display

EE300EX-HT6SADaxxxbcFMde

- **a** = Electrical Connection; B, C, F, G, H, I, V, W, X or Y
- **b** = Filter; C, D, E, I, J, K, L or M
- **c** = Sensor Protection; x or 1
- **d** = Special option; Blank or Gx
- **e** = Software Code: 11 Digits (Not Safety Relevant)

Entity parameters:

<table>
<thead>
<tr>
<th>Terminals</th>
<th>Vmax or Ui</th>
<th>Imax or Ii</th>
<th>Pi</th>
<th>Li</th>
<th>Ci</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH 1: + and -</td>
<td>6.4Vdc ≤ Ui ≤ 28Vdc</td>
<td>100mA</td>
<td>0.7W</td>
<td>0mH</td>
<td>2.2nF</td>
</tr>
<tr>
<td>CH 2: + and -</td>
<td>6.4Vdc ≤ Ui ≤ 28Vdc</td>
<td>100mA</td>
<td>0.7W</td>
<td>0mH</td>
<td>2.2nF</td>
</tr>
</tbody>
</table>

EE300EX-HT6SaDbcdegFMhi

- **a** = Model; E, M, S or U
- **b** = Electrical Connection; B, C, F, G, H, I, V, W, X or Y
- **c** = Probe – Cable Length; A, B, C, E, F, G or H
- **d** = Probe Length; C, D, F, G, H, J, K or L
- **e** = Zone Feedthrough (probe fitting); x, A, B, C, F, H or D
- **f** = Filter; C, D, E, I, J, K, L or M
- **g** = Sensor Protection; x or 1
- **h** = Special option; Blank or Gx
- **i** = Software Code: 11 Digits (Not Safety Relevant)

Entity parameters:

<table>
<thead>
<tr>
<th>Terminals</th>
<th>Vmax or Ui</th>
<th>Imax or Ii</th>
<th>Pi</th>
<th>Li</th>
<th>Ci</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH 1: + and -</td>
<td>6.4Vdc ≤ Ui ≤ 28Vdc</td>
<td>100mA</td>
<td>0.7W</td>
<td>0mH</td>
<td>2.2nF</td>
</tr>
<tr>
<td>CH 2: + and -</td>
<td>6.4Vdc ≤ Ui ≤ 28Vdc</td>
<td>100mA</td>
<td>0.7W</td>
<td>0mH</td>
<td>2.2nF</td>
</tr>
</tbody>
</table>

Remote probe - Temperature Code:

<table>
<thead>
<tr>
<th>T-Code</th>
<th>Ambient Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>T6</td>
<td>-40°C < Ta < 60°C</td>
</tr>
<tr>
<td>T5</td>
<td>-40°C < Ta < 75°C</td>
</tr>
<tr>
<td>T4</td>
<td>-40°C < Ta < 110°C</td>
</tr>
<tr>
<td>T3</td>
<td>-40°C < Ta < 175°C</td>
</tr>
<tr>
<td>T2</td>
<td>-40°C < Ta < 180°C</td>
</tr>
<tr>
<td>T1</td>
<td>-40°C < Ta < 180°C</td>
</tr>
</tbody>
</table>

THIS CERTIFICATE MAY ONLY BE REPRODUCED IN ITS ENTIRETY AND WITHOUT CHANGE
EE300EX-xT6SADaxxxFMb
b = Software Code: 6 Digits (Not Safety Relevant)

Entity parameters:

<table>
<thead>
<tr>
<th>Terminals</th>
<th>Vmax or Ui</th>
<th>Imax or li</th>
<th>Pi</th>
<th>Li</th>
<th>Ci</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH 1: + and -</td>
<td>6.4Vdc ≤ Ui ≤ 28Vdc</td>
<td>100mA</td>
<td>0.7W</td>
<td>0mH</td>
<td>2.2nF</td>
</tr>
<tr>
<td>CH 2: + and -</td>
<td>6.4Vdc ≤ Ui ≤ 28Vdc</td>
<td>100mA</td>
<td>0.7W</td>
<td>0mH</td>
<td>2.2nF</td>
</tr>
</tbody>
</table>

EE300EX-xT6SAdcdefFMf
a = Model: H
c = Probe – Cable Length: A, B, C, E, F, G or H
d = Probe length: E
e = Zone Feedthrough (probe fitting): x, l or J
f = Software Code: 6 Digits (Not Safety Relevant)

Entity parameters:

<table>
<thead>
<tr>
<th>Terminals</th>
<th>Vmax or Ui</th>
<th>Imax or li</th>
<th>Pi</th>
<th>Li</th>
<th>Ci</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH 1: + and -</td>
<td>6.4Vdc ≤ Ui ≤ 28Vdc</td>
<td>100mA</td>
<td>0.7W</td>
<td>0mH</td>
<td>2.2nF</td>
</tr>
<tr>
<td>CH 2: + and -</td>
<td>6.4Vdc ≤ Ui ≤ 28Vdc</td>
<td>100mA</td>
<td>0.7W</td>
<td>0mH</td>
<td>2.2nF</td>
</tr>
</tbody>
</table>

Remote probe - Temperature Code:

<table>
<thead>
<tr>
<th>T-Code</th>
<th>Ambient Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>T6</td>
<td>-70°C < Ta < 60°C</td>
</tr>
<tr>
<td>T5</td>
<td>-70°C < Ta < 75°C</td>
</tr>
<tr>
<td>T4</td>
<td>-70°C < Ta < 110°C</td>
</tr>
<tr>
<td>T3</td>
<td>-70°C < Ta < 175°C</td>
</tr>
<tr>
<td>T2</td>
<td>-70°C < Ta < 200°C</td>
</tr>
<tr>
<td>T1</td>
<td>-70°C < Ta < 200°C</td>
</tr>
</tbody>
</table>

13. Specific Conditions of Use:

Equipment Group I: EE300Ex without display
1. Filter options C, E, J, K and L are not allowed in Groups A or B for Division 1 and EPL 3a IIC for Zone 0.
2. The EE300Ex Remote Probe is approved for in air applications only.
3. The serial software configuration port of the EE300EX may only be used with the Product Configuration Adapter HA011061.

Equipment Group II: EE300Ex with display
1. The EE300Ex Remote Probe is approved for in air applications only.
2. The serial software configuration port of the EE300EX may only be used with the Product Configuration Adapter HA011061.

THIS CERTIFICATE MAY ONLY BE REPRODUCED IN ITS ENTIRETY AND WITHOUT CHANGE
14. **Test and Assessment Procedure and Conditions:**

 This Certificate has been issued in accordance with FM Approvals US Certification Requirements.

15. **Schedule Drawings**

 A copy of the technical documentation has been kept by FM Approvals.

16. **Certificate History**

 Details of the supplements to this certificate are described below:

<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd October 2017</td>
<td>Original Issue.</td>
</tr>
</tbody>
</table>
 Description of the Change: Updated standard editions to the latest revisions, added options for electrical connections, added option for probe fitting and converted certificate to new format. |
CERTIFICATE OF CONFORMITY

1. HAZARDOUS LOCATION ELECTRICAL EQUIPMENT PER CANADIAN REQUIREMENTS

2. Certificate No: FM17CA0154X

3. Equipment: (Type Reference and Name) EE3000Ex-series Humidity and Temperature Transmitter

4. Name of Listing Company: E+E ELEKTRONIK Ges.m.b.H

5. Address of Listing Company: Langwiesen 7 Engewitzdorf 4209 Austria

6. The examination and test results are recorded in confidential report number: 3049300 dated 2nd October 2017

7. FM Approvals LLC, certifies that the equipment described has been found to comply with the following Approval standards and other documents:

8. If the sign ‘X’ is placed after the certificate number, it indicates that the equipment is subject to specific conditions of use specified in the schedule to this certificate.

9. This certificate relates to the design, examination and testing of the products specified herein. The FM Approvals surveillance audit program has further determined that the manufacturing processes and quality control procedures in place are satisfactory to manufacture the product as examined, tested and Approved.

10. Equipment Ratings:
 Intrinsically Safe for Class I, II, III Division 1, Groups A, B, C, D, E, F, and G hazardous locations in accordance with drawing M1_1309080, Nonincendive for Class I, II, III Division 2, Groups A, B, C, D, E, F, and G hazardous locations, Intrinsically Safe for Class I, Zone 0, Group IIC hazardous locations in accordance with drawing M1_1309080, Intrinsically Safe for Class II and III, Zone 20, Group IIIC hazardous locations in accordance with

Certificate issued by:

J.E. Marquedant
VP, Manager, Electrical Systems

30 November 2017 Date

To verify the availability of the Approved product, please refer to www.approvalguide.com

THIS CERTIFICATE MAY ONLY BE REPRODUCED IN ITS ENTIRETY AND WITHOUT CHANGE

FM Approvals LLC, 1151 Boston-Providence Turnpike, Norwood, MA 02062 USA
T: +1 (1) 781 762 4300 F: +1 (1) 781 762 9375 E-mail: information@fmapprovals.com www.fmapprovals.com
drawing M1_1309080, IP65 with an ambient temperature rating of -40°C to 60°C.

11. The marking of the equipment shall include:

 Equipment Group I: EE300Ex without display
 - Class I, II, III, Division 1, Groups A, B, C, D, E, F and G; T4 Ta = -40°C to +60°C; Entity – M1_139080; IP65
 - Class I, II, III, Division 2, Groups A, B, C, D, E, F and G; T4 Ta = -40°C to +60°C
 - Zone 0, Ex ia IIC T4 Ta = -40°C to +60°C Ga; Entity – M1_139080; IP65
 - Zone 20, Ex ia IIIC T131°C Ta = -40°C to +60°C Da; Entity – M1_139080; IP65

 Remote Probe:
 - Class I, II, III, Division 1, Groups A, B, C, D, E, F and G; T6…T1; Entity – M1_139080; IP65
 - Class I, II, III, Division 2, Groups A, B, C, D, E, F and G; T6…T1
 - Zone 0, Ex ia IIC T6…T1 Ga; Entity – M1_139080; IP65
 - Zone 20, Ex ia IIIC T80°C Da; Entity – M1_139080; IP65

 Equipment Group II: EE300Ex with display
 - Class I, Division 1, Groups C, and D; T4 Ta = -40°C to +60°C; Entity – M1_139080
 - Class I, Division 2, Groups A, B, C and D; T4 Ta = -40°C to +60°C; Entity – M1_139080
 - Zone 0, Ex ia IIB T4 Ta = -40°C to +60°C Ga; Entity – M1_139080
 - Zone 1, Ex ia IIB T4 Ta = -40°C to +60°C Gb; Entity – M1_139080

 Remote Probe:
 - Class I, II, III, Division 1, Groups A, B, C, D, E, F and G; T6…T1; Entity – M1_139080; IP65
 - Class I, II, III, Division 2, Groups A, B, C, D, E, F and G; T6…T1
 - Zone 0, Ex ia IIC T6…T1 Ga; Entity – M1_139080; IP65
 - Zone 20, Ex ia IIIC T80°C Da; Entity – M1_139080; IP65

12. **Description of Equipment:**

 General - The EE300Ex transmitter is designed for gauge measurements of temperature and humidity in air. All signal outputs are available on two 4 to 20 mA analog outputs.

 Construction - The EE300Ex transmitter consists of a single compartment electronics housing. The enclosure is of stainless steel and has an integrated or remote humidity and/or temperature sensor.

 The EE300Ex transmitter is designed for use with the Product Configuration Adapter (PCA) HA011061 in non-hazardous locations for software configuration.

 THIS CERTIFICATE MAY ONLY BE REPRODUCED IN ITS ENTIRETY AND WITHOUT CHANGE
Ratings - The EE300Ex transmitter operates at 6.4-28 Vdc (700mW). The transmitters are rated for use in an ambient temperature range of -40°C to +60°C. The transmitter probe is rated for use in a process temperature range of -70°C to +200°C.

Equipment Group I: EE300Ex without display

EE300EX-HT6SaxaxxxbcCad

a = Electrical Connection; B, C, F, G, H, I, V, W, X or Y
b = Filter; C, D, E, I, J, K, L or M
c = Sensor Protection; x or 1
d = Special option; Blank or Gx
e = Software Code: 11 Digits (Not Safety Relevant)

Entity parameters:

<table>
<thead>
<tr>
<th>Terminals</th>
<th>Vmax or Ui</th>
<th>Imax or li</th>
<th>Pi</th>
<th>Li</th>
<th>Cl</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH 1: + and -</td>
<td>6.4Vdc ≤ Ui ≤ 28Vdc</td>
<td>100mA</td>
<td>0.7W</td>
<td>0mH</td>
<td>2.2nF</td>
</tr>
<tr>
<td>CH 2: + and -</td>
<td>6.4Vdc ≤ Ui ≤ 28Vdc</td>
<td>100mA</td>
<td>0.7W</td>
<td>0mH</td>
<td>2.2nF</td>
</tr>
</tbody>
</table>

EE300EX-HT6SabcddefgCAhi

a = Model; E, M, S or U
b = Electrical Connection; B, C, F, G, H, I, V, W, X or Y
c = Probe – Cable Length; A, B, C, E, F, G or H
d = Probe Length; C, D, F, G, H, J, K or L
e = Zone Feedthrough (probe fitting); x, A, B, C, F, H or D
f = Filter; C, D, E, I, J, K, L or M
g = Sensor Protection; x or 1
h = Special option; Blank or Gx
i = Software Code: 11 Digits (Not Safety Relevant)

Entity parameters:

<table>
<thead>
<tr>
<th>Terminals</th>
<th>Vmax or Ui</th>
<th>Imax or li</th>
<th>Pi</th>
<th>Li</th>
<th>Cl</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH 1: + and -</td>
<td>6.4Vdc ≤ Ui ≤ 28Vdc</td>
<td>100mA</td>
<td>0.7W</td>
<td>0mH</td>
<td>2.2nF</td>
</tr>
<tr>
<td>CH 2: + and -</td>
<td>6.4Vdc ≤ Ui ≤ 28Vdc</td>
<td>100mA</td>
<td>0.7W</td>
<td>0mH</td>
<td>2.2nF</td>
</tr>
</tbody>
</table>

Remote probe - Temperature Code:

<table>
<thead>
<tr>
<th>T-Code</th>
<th>Ambient Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>T6</td>
<td>-40°C < Ta ≤ 60°C</td>
</tr>
<tr>
<td>T5</td>
<td>-40°C < Ta ≤ 75°C</td>
</tr>
<tr>
<td>T4</td>
<td>-40°C < Ta ≤ 110°C</td>
</tr>
<tr>
<td>T3</td>
<td>-40°C < Ta ≤ 175°C</td>
</tr>
<tr>
<td>T2</td>
<td>-40°C < Ta ≤ 180°C</td>
</tr>
<tr>
<td>T1</td>
<td>-40°C < Ta ≤ 180°C</td>
</tr>
</tbody>
</table>
SCHEDULE

Canadian Certificate Of Conformity No: FM17CA0154X

EE300EX-xT6SaxxxxxCAb
b = Software Code: 6 Digits (Not Safety Relevant)

Entity parameters:

<table>
<thead>
<tr>
<th>Terminals</th>
<th>Vmax or Ui</th>
<th>Imax or li</th>
<th>Pi</th>
<th>Li</th>
<th>Ci</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH 1: + and -</td>
<td>6.4Vdc ≤ Ui ≤ 28Vdc</td>
<td>100mA</td>
<td>0.7W</td>
<td>0mH</td>
<td>2.2nF</td>
</tr>
<tr>
<td>CH 2: + and -</td>
<td>6.4Vdc ≤ Ui ≤ 28Vdc</td>
<td>100mA</td>
<td>0.7W</td>
<td>0mH</td>
<td>2.2nF</td>
</tr>
</tbody>
</table>

EE300EX-xT6SaxbcdeCAF
a = Model; H
c = Probe – Cable Length; A, B, C, E, F, G or H
d = Probe length; E
e = Zone Feedthrough (probe fitting): x, I or J
f = Software Code: 6 Digits (Not Safety Relevant)

Entity parameters:

<table>
<thead>
<tr>
<th>Terminals</th>
<th>Vmax or Ui</th>
<th>Imax or li</th>
<th>Pi</th>
<th>Li</th>
<th>Ci</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH 1: + and -</td>
<td>6.4Vdc ≤ Ui ≤ 28Vdc</td>
<td>100mA</td>
<td>0.7W</td>
<td>0mH</td>
<td>2.2nF</td>
</tr>
<tr>
<td>CH 2: + and -</td>
<td>6.4Vdc ≤ Ui ≤ 28Vdc</td>
<td>100mA</td>
<td>0.7W</td>
<td>0mH</td>
<td>2.2nF</td>
</tr>
</tbody>
</table>

Remote probe - Temperature Code:

<table>
<thead>
<tr>
<th>T-Code</th>
<th>Ambient Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>T6</td>
<td>-70°C < Ta < 60°C</td>
</tr>
<tr>
<td>T5</td>
<td>-70°C < Ta < 75°C</td>
</tr>
<tr>
<td>T4</td>
<td>-70°C < Ta < 110°C</td>
</tr>
<tr>
<td>T3</td>
<td>-70°C < Ta < 175°C</td>
</tr>
<tr>
<td>T2</td>
<td>-70°C < Ta < 200°C</td>
</tr>
<tr>
<td>T1</td>
<td>-70°C < Ta < 200°C</td>
</tr>
</tbody>
</table>
SCHEDULE

Canadian Certificate Of Conformity No: FM17CA0154X

Equipment Group II: EE300Ex with display

EE300EX-HT6SATxxbCAde
a = Electrical Connection; B, C, F, G, H, I, V, W, X or Y
b = Filter; C, D, E, I, J, K, L or M
c = Sensor Protection; x or 1
d = Special option; Blank or Gx
e = Software Code: 11 Digits (Not Safety Relevant)

Entity parameters:

<table>
<thead>
<tr>
<th>Terminals</th>
<th>Vmax or Ui</th>
<th>Imax or Ii</th>
<th>Pi</th>
<th>Li</th>
<th>Cl</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH 1: + and -</td>
<td>6.4Vdc ≤ Ui ≤ 28Vdc</td>
<td>100mA</td>
<td>0.7W</td>
<td>0mH</td>
<td>2.2nF</td>
</tr>
<tr>
<td>CH 2: + and -</td>
<td>6.4Vdc ≤ Ui ≤ 28Vdc</td>
<td>100mA</td>
<td>0.7W</td>
<td>0mH</td>
<td>2.2nF</td>
</tr>
</tbody>
</table>

EE300EX-HT6SaDbcdefgCAhi
a = Model; E, M, S or U
b = Electrical Connection; B, C, F, G, H, I, V, W, X or Y
c = Probe – Cable Length; A, B, C, E, F, G or H
d = Probe Length; C, D, F, G, H, J, K or L
e = Zone Feedthrough (probe fitting); x, A, B, C, F, H or D
f = Filter; C, D, E, I, J, K, L or M
g = Sensor Protection; x or 1
h = Special option; Blank or Gx
i = Software Code: 11 Digits (Not Safety Relevant)

Entity parameters:

<table>
<thead>
<tr>
<th>Terminals</th>
<th>Vmax or Ui</th>
<th>Imax or Ii</th>
<th>Pi</th>
<th>Li</th>
<th>Cl</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH 1: + and -</td>
<td>6.4Vdc ≤ Ui ≤ 28Vdc</td>
<td>100mA</td>
<td>0.7W</td>
<td>0mH</td>
<td>2.2nF</td>
</tr>
<tr>
<td>CH 2: + and -</td>
<td>6.4Vdc ≤ Ui ≤ 28Vdc</td>
<td>100mA</td>
<td>0.7W</td>
<td>0mH</td>
<td>2.2nF</td>
</tr>
</tbody>
</table>

Remote probe - Temperature Code:

<table>
<thead>
<tr>
<th>T-Code</th>
<th>Ambient Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>T6</td>
<td>-40°C < Ta < 80°C</td>
</tr>
<tr>
<td>T5</td>
<td>-40°C < Ta < 75°C</td>
</tr>
<tr>
<td>T4</td>
<td>-40°C < Ta < 110°C</td>
</tr>
<tr>
<td>T3</td>
<td>-40°C < Ta < 175°C</td>
</tr>
<tr>
<td>T2</td>
<td>-40°C < Ta < 180°C</td>
</tr>
<tr>
<td>T1</td>
<td>-40°C < Ta < 180°C</td>
</tr>
</tbody>
</table>

THIS CERTIFICATE MAY ONLY BE REPRODUCED IN ITS ENTIRETY AND WITHOUT CHANGE
SCHEDULE

Canadian Certificate Of Conformity No: FM17CA0154X

EE300EX-xT6SADaxxxCAb
a = Electrical Connection; B, C, F, G, H, I, V, W, X or Y
b = Software Code: 6 Digits (Not Safety Relevant)

certified entity parameters:

<table>
<thead>
<tr>
<th>Terminals</th>
<th>Vmax or Ui</th>
<th>Imax or Ii</th>
<th>Pi</th>
<th>Li</th>
<th>Ci</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH 1: + and -</td>
<td>6.4Vdc ≤ Ui ≤ 28Vdc</td>
<td>100mA</td>
<td>0.7W</td>
<td>0mH</td>
<td>2.2nF</td>
</tr>
<tr>
<td>CH 2: + and -</td>
<td>6.4Vdc ≤ Ui ≤ 28Vdc</td>
<td>100mA</td>
<td>0.7W</td>
<td>0mH</td>
<td>2.2nF</td>
</tr>
</tbody>
</table>

EE300EX-xT6SaDbcdeCAf
a = Model; H
b = Electrical Connection; B, C, F, G, H, I, V, W, X or Y
c = Probe – Cable Length; A, B, C, E, F, G or H
d = Probe length; E
e = Zone Feedthrough (probe fitting): x, I or J
f = Software Code: 6 Digits (Not Safety Relevant)

certified entity parameters:

<table>
<thead>
<tr>
<th>Terminals</th>
<th>Vmax or Ui</th>
<th>Imax or Ii</th>
<th>Pi</th>
<th>Li</th>
<th>Ci</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH 1: + and -</td>
<td>6.4Vdc ≤ Ui ≤ 28Vdc</td>
<td>100mA</td>
<td>0.7W</td>
<td>0mH</td>
<td>2.2nF</td>
</tr>
<tr>
<td>CH 2: + and -</td>
<td>6.4Vdc ≤ Ui ≤ 28Vdc</td>
<td>100mA</td>
<td>0.7W</td>
<td>0mH</td>
<td>2.2nF</td>
</tr>
</tbody>
</table>

Remote probe - Temperature Code:

<table>
<thead>
<tr>
<th>T-Code</th>
<th>Ambient Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>T6</td>
<td>-70°C < Ta < 60°C</td>
</tr>
<tr>
<td>T5</td>
<td>-70°C < Ta < 75°C</td>
</tr>
<tr>
<td>T4</td>
<td>-70°C < Ta < 110°C</td>
</tr>
<tr>
<td>T3</td>
<td>-70°C < Ta < 175°C</td>
</tr>
<tr>
<td>T2</td>
<td>-70°C < Ta < 200°C</td>
</tr>
<tr>
<td>T1</td>
<td>-70°C < Ta < 200°C</td>
</tr>
</tbody>
</table>

13. Specific Conditions of Use:

Equipment Group I: EE300Ex without display
1. Filter options C, E, J, K and L are not allowed in Groups A or B for Division 1 and EPL Ga IIC for Zone 0.
2. The EE300Ex Remote Probe is approved for in air applications only.
3. The serial software configuration port of the EE300EX may only be used with the Product Configuration Adapter HA011061.

Equipment Group II: EE300Ex with display
1. The EE300Ex Remote Probe is approved for in air applications only.
2. The serial software configuration port of the EE300EX may only be used with the Product Configuration Adapter HA011061.
14. **Test and Assessment Procedure and Conditions:**

 This Certificate has been issued in accordance with FM Approvals Canadian Certification Scheme.

15. **Schedule Drawings**

 A copy of the technical documentation has been kept by FM Approvals.

16. **Certificate History**

 Details of the supplements to this certificate are described below:

<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd October 2017</td>
<td>Original Issue.</td>
</tr>
<tr>
<td></td>
<td>Description of the Change: Updated standard editions to the latest revisions, added options for electrical connections, added option for probe fitting and converted certificate to new format.</td>
</tr>
</tbody>
</table>
Wiring diagram for intrinsically safe operation of the EE300Ex-series humidity and temperature transmitter or temperature transmitter.

EE300Ex SERIES

6.4Vdc ≤ Vmax (or UI) ≤ 28Vdc
Imax (or Ii) = 100mA
Po = 0.700W
Ci = 2.2uF
Li = 0.1mH

Hazardous (Classified) Location

Unclassified Location

Terminal 2 CH2-

Terminal 3 CH2+

Terminal 5 CH1-

Terminal 6 CH1+

Intrinsically safe transmitter supply unit

Power supply

Control

ASSOCIATED APPARATUS
WITH ENTITY PARAMETERS

Voc (or UI) ≤ Vmax (or UI)
Ibc (or Io) ≤ Imax (or Ii)
Po ≤ Pi
Ca (or Co) ≥ Ci + Cicable
La (or Lo) ≥ Li + Licable

EE300Ex without display:

Class I, Division 1 and 2, Groups A, B, C, D, T4 Ta=60°C
Class II, Division 1 and 2, Groups E, F, G
Class III, Division 1 and 2
or
Class II, Zone 0, Group IIC, T4 Ta=60°C, Ga
Class II, Zone 20, Group IIC, T131°C, Da, IP65
Class III, Zone 20, Group IIC, T151°C, Da, IP65

EE300Ex with display:

Class I, Division 1, Groups C, D, T4 Ta=60°C
Class I, Division 2, Groups A, B, C, D, T4 Ta=60°C
or
Class I, Zone 0, Group IIb, T4 Ta=60°C, Ga
Class I, Zone 1, Group IIb, T4 Ta=60°C, Gb

Ambient temperature limits:
-40°C (-40°F) Ta 60°C (140°F)

NOTE

1. Equipment that is FM-approved for intrinsic safety may be connected to FM-approved barriers based on the ENTITY CONCEPT.

Vmax or UI ≥ Voc, Vt or Uo
Imax or Ii ≥ Ic, It or Io
Pmax or Pi > Po
Ca ≥ Ci + Cicable
La ≥ Li + Licable

2. Installation in Canada:

Installation must be completed in accordance with ANSI/CSA C22.2.1.

Installation must be completed in accordance with the Canadian Electrical Code (CSA C22.1).

4. There is no display permitted in the gas hazard area Zone 0 for Group IIC

or Class I, Division 1, Group A, B, and in the dust hazard area for Groups III A, III B and III C or Class II, III

5. CH1 and CH2 must be galvanically isolated from one another during operation.

6. Intrinsically safe barrier ground must be less than 1 ohm.

7. To avoid static discharge the sensor probe cable should be laid in an earthed metallic protective hose.

8. It is forbidden to work on open transmitter at Division 1 or Zone 0.

9. Filter caps containing plastic parts are capable for group C and D in Division 1 and group IIb in Zone 0.

10. EE300Ex must be supplied through shielded cables.

11. Maximum undeclassified location voltage is 250V ac.

WARNING: To prevent ignition of flammable or combustible atmospheres disconnect power before service.

AVERTISSEMENT - NE PAS OUVRIR SOUS TENSION

M1_1309080

Intrinsically Safe Controller Drawing for EE300Ex
Humidity / Temperature Transmitter
Division 1 and Zone 0 Dr Application

14. CONTROL DRAWING M1_1309080
Wire diagram for intrinsically safe operation of the EE300Ex-series humidity and temperature transmitter or temperature transmitter.

Hazardous (Classified) Location

Unclassified Location

EE300Ex remote probe:

- Class I, Division 1 and 2, Groups A, B, C, D, T6 - T11
- Class II, Division 1 and 2, Groups E, F, G
- Class III, Division 1 and 2
- or
- Class I, Zone 0, Group IIC, T6 - T11, Ga
- Class II, Zone 20, Group IIC, T80°C, Da, IP65
- Class III, Zone 20, Group IIC, T80°C, Da, IP65

Note:

T6 and T5 only if EE300Ex is in unclassified location

Note for humidity and temperature probe:

- T6 temperature class based on -40°C (-40°F) Ta 60°C (140°F)
- T5 temperature class based on -40°C (-40°F) Ta 75°C (167°F)
- T4 temperature class based on -40°C (-40°F) Ta 110°C (230°F)
- T3 temperature class based on -40°C (-40°F) Ta 175°C (347°F)
- T2 temperature class based on -40°C (-40°F) Ta 180°C (356°F)
- T1 temperature class based on -40°C (-40°F) Ta 180°C (356°F)

Note for temperature probe:

- T6 temperature class based on -70°C (-94°F) Ta 60°C (140°F)
- T5 temperature class based on -70°C (-94°F) Ta 75°C (167°F)
- T4 temperature class based on -70°C (-94°F) Ta 110°C (230°F)
- T3 temperature class based on -70°C (-94°F) Ta 175°C (347°F)
- T2 temperature class based on -70°C (-94°F) Ta 200°C (392°F)
- T1 temperature class based on -70°C (-94°F) Ta 200°C (392°F)

Note:

Intrinsically safe supply for EE300Ex is necessary if remote probe is in hazardous location.
Wiring diagram for intrinsincally safe operation of the EE300Ex-series humidity and temperature transmitter or temperature transmitter.

Product Configuration Adapter (PCA) HA011061:

HA011061 only for Unclassified Location

RS232 (the external power supply required is included as standard with the configuration adapter):

USB:

Configuration adapter - HA011050

Connection cable - HA011061

Ambient temperature limits:
-40°C (-40°F) To 40°C (104°F)

Note: Maximum unclassified location voltage is 250V ac/dc.